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Chronic activation of cardiac Atg‑5 
and pancreatic Atg‑7 by intermittent fasting 
alleviates acute myocardial infarction in old rats
Sahar Mohamed El Agaty*  , Noha A. Nassef, Doaa A. Abou‑Bakr and Aya A. Hanafy 

Abstract 

Background:  Aging is associated with cardiovascular and metabolic changes, increasing the susceptibility to acute 
myocardial infarction (AMI). Intermittent fasting (IF) has a beneficial effect on the age-associated cardiovascular dis‑
eases. The present study was planned to investigate the possible protective effect of IF against acute AMI induced by 
isoproterenol (ISO) in old rats and its possible underlying mechanisms mediated by heart and pancreatic autophagy. 
Thirty Male Wistar rats were divided into four groups: adult; old; Old-ISO (rats subjected to AMI by ISO) and Old-F-ISO 
groups (rats were subjected to IF for 4 weeks and AMI by ISO).

Results:  IF significantly increased the mRNA expression of cardiac Atg-5 and pancreatic Atg-7 in Old-F-ISO versus old 
and adult groups. This was associated with a significant decrease in serum troponin-I, serum creatine kinase (CK-MB), 
cardiac malondialdehyde and cardiac TNF-α, fasting plasma glucose, and HOMA-IR in Old-F-ISO compared to Old-ISO 
group. Also, IF significantly decreased the age-related overall and visceral obesity in Old-F-ISO versus old and Old-
ISO groups. Histological studies revealed attenuation of the local inflammatory response in Old-F-ISO versus Old-ISO 
group. Pancreatic Atg-7 and heart Atg-5 were significantly increased in Old-ISO versus old rats.

Conclusions:  IF protects against acute AMI in old rats, possibly, via chronic activation of heart Atg-5 and pancreatic 
Atg-7, and alleviation of age-related overall and visceral obesity. Thus, IF could be a dietary lifestyle modification for 
attenuation of the susceptibility to acute AMI in aged population. On the other hand, acute activation of heart and 
pancreatic autophagy by ISO might augment cardiac injury.
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Background
Aging is characterized by slow and progressive structural 
and functional changes of the heart and blood vessels, 
leading to cardiac hypertrophy, endothelial dysfunction, 
coronary insufficiency, and ischemic changes, increas-
ing the susceptibility of old individuals to develop myo-
cardial infarction [1]. Several cardiovascular risk factors 
have been proposed to mediate the pathogenesis of such 
detrimental changes. Metabolic comorbidities including 

obesity, dyslipidemia, hypertension, and hyperglycemia 
often cluster together in elderly people, promoting the 
vascular remodeling, endothelial injury and enhancing 
coronary insufficiency [2]. Moreover, inflammation and 
oxidative stress are gradually recognized as strong con-
tributors to myocardial infarction with bad prognosis in 
aged individuals [3, 4].

Autophagy is an evolutionary process that degrades 
long lived or damaged cellular organelles and proteins for 
detoxification, energy production, and cellular renewal 
[5]. Normal basal autophagy is essential for metabolic 
fitness and adaptation to stressful conditions, such as 
nutrient deprivation, hypoxia, or oxidative stress [6, 7]. 
Regulation of mitochondrial autophagy plays a key role 
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in cardiac homeostasis [8]. Activation of autophagy dur-
ing ischemic injury or ischemia/reperfusion injury was 
found able to protect cardiomyocytes [9]. Additionally, 
autophagy was postulated to prevent the inflammatory 
and oxidative changes, thus attenuating the progression 
of cardiac injury [10]. Accumulating line of evidence indi-
cates that autophagy declines with aging and such decline 
initiates age-related cardiovascular diseases, metabolic 
disorders, and diabetic changes [5]. Disturbed autophagy 
was postulated to trigger the development of metabolic 
stresses including obesity, insulin resistance and dyslipi-
demia in the aging process [11, 12]. Thus, activation of 
autophagy in aged population might be a potential new 
strategy that alleviates the age-associated cardiac and 
metabolic changes which further attenuates the suscepti-
bility to acute cardiac insult.

Intermittent fasting (IF), alternating cycles of fasting 
and eating, is one of dietary regimens that have been 
established to increase life expectancy and to reduce 
the incidence of age-associated diseases, including can-
cer, diabetes, and kidney disease in animal models [13]. 
Previous studies had proved that IF can prevent meta-
bolic derangement by reducing body weight [14]; and by 
improving insulin resistance [15]. Moreover, prolonged 
IF in human has been shown to produce positive effects 
on the inflammatory status of the body via decreasing 
serum levels of IL-6, homocysteine, and C-reactive pro-
tein [16]. IF was also reported to attenuate free-radical 
production and improve cellular stress response [17]. 
Recently, it has been reported that IF can activate cardiac 
autophagy and reverse an advanced form of cardiomyo-
pathy [18]. The present study was planned to elucidate 
the effect of IF on aged heart, and its potential to attenu-
ate acute myocardial infarction, induced by isoproterenol 
injection. The possible underlying mechanisms mediated 
by heart and pancreatic autophagy were also investigated. 
Isoproterenol (ISO) was used to induce AMI in the cur-
rent work. ISO-induced AMI is a common, reproducible 
experimental model, producing biochemical, cardiac, and 
histopathological changes which mimic those of humans 
[19].

Methods
Experimental protocol
This study was carried out on 30 male Wistar rats (10 
adult rats, aged 6 month and weighing 170–250 g; and 20 
old rats, aged 24  month and weighing 255–450  g). Rats 
were maintained under regular 12 h:12 h day/night cycle, 
fed standard rat chow and had free access to water. The 
animals were acclimatized for 7  days prior to the com-
mencement of the study. All experimental procedures 
were carried out according to the Guide for the Care and 
Use of Laboratory Animals published by the US National 

Institute of Health (No. FWA 00017585; FMASU MS 
132/2020).

Intermittent fasting (IF)
Rats subjected to alternate day fasting were fed ad  libi-
tum every other day and fasted the following day with 
free access to water for 4 weeks. On the fasting day, the 
cages were changed to avoid the presence of remaining 
pellets.

Induction of experimental myocardial infarction
Isoproterenol (Sigma-Aldrich, St. Louis, MO) was 
freshly prepared in normal saline and injected at a dose 
of 85 mg/kg body weight by subcutaneous route for two 
days at 24  h interval (on day 27th and 28th) to induce 
myocardial infarction [20].

Experimental design
Rats were randomly assigned into four groups. Adult 
group (n = 10), old group (n = 6), old-isoproterenol 
group, (Old-ISO, n = 7); and old-intermittent fasting-
isoproterenol group, (Old-F-ISO, n = 7). Rats in adult, 
old, and Old-ISO groups were allowed free access to food 
and water throughout the experiment. Rats in Old-F-ISO 
group were subjected to IF. Rats in adult and old groups 
were injected subcutaneously on day 27th and 28th with 
normal saline. Rats in Old-ISO and Old-F-ISO groups 
were subjected to AMI. Anthropometric parameters of 
all rats were measured at the beginning and at the end 
of the study. At the end of the experimental period, over-
night fasted rats were weighed and anesthetized by intra-
peritoneal injection of pentobarbital at a dose of 40 mg/
kg. A midline abdominal incision was made, and abdomi-
nal aorta was exposed and cannulated with a catheter. 
Blood samples were collected in EDTA tubes, centrifuged 
at 5000 rpm for 15 min. The plasma was collected in ali-
quots and stored at − 80 °C, till used for determination of 
glucose homeostasis parameters, fasting plasma glucose 
(FPG) and fasting insulin (FI); and cardiac injury markers, 
creatine kinase-myocardial band (CK-MB) and troponin-
I (cTnI). Then, the visceral adipose tissue, left ventricle 
and pancreas were carefully excised. The weight of vis-
ceral adipose tissue was determined. Then, a small part of 
the left ventricle and the pancreas were stored at − 80 °C 
and used for later determination of cardiac tissue levels 
of malondialdehyde (MDA), reduced glutathione (GSH), 
and tumor necrosis factor-alpha (TNF-α); and the mRNA 
expression of cardiac autophagy related-5 (Atg-5), as 
well as pancreatic autophagy related-7 (Atg-7). Then, the 
remaining part of the left ventricles were preserved in 
10% formalin for histopathological examination.



Page 3 of 12El Agaty et al. The Egyptian Heart Journal           (2022) 74:31 	

Biochemical analysis
Measurement of glucose homeostasis parameters
FPG was assayed by using kits supplied by Diamond 
Diagnostics, Egypt [21]. FI was measured by a quantita-
tive sandwich enzyme immunoassay (ELISA) technique, 
using kits supplied by My BioSource company, USA.

Homeostasis Model Assessment of Insulin Resistance 
(HOMA-IR) and Beta Cell Function (HOMA-%B) were 
calculated according to [22], as follows:

•	 HOMA-IR = [Fasting insulin (mU/l) × Fasting glu-
cose (mg/dl) × 0.0555]/22.5

•	 HOMA-%B = [20 × Fasting Insulin (mU/l)]/[(Fasting 
Glucose (mg/dl) × 0.0555) − 3.5]

Measurement of cardiac injury markers, CK‑MB 
and Troponin‑I
CK-MB and cTnI were quantitatively determined in 
plasma using kits supplied by BioMed Diagnostics com-
pany, Egypt [23], and rat specific enzyme immunoassay 
(ELISA) kits supplied by My BioSource company, USA, 
respectively.

Measurement of cardiac tissue levels of oxidative stress 
markers, MDA and GSH
MDA and GSH were determined using kits supplied by 
Biodiagnostic, Egypt.

Measurement of cardiac tissue level of proinflammatory 
marker, TNF‑α
TNF-α was measured quantitatively by using rat specific 
TNF-α immunoassay (ELISA) kits supplied by Cusabio 
company, USA.

Determination of the autophagy markers in cardiac tissue 
(Atg‑5) and pancreatic tissue (Atg‑7) by quantitative 
real‑time PCR
Total RNA was isolated using Qiagen kit, USA accord-
ing to instructions of manufacture. The total RNA was 
used for cDNA conversion using high capacity cDNA 
reverse transcription kit Fermentas, USA. Real-time 
qPCR amplification and analysis were performed using 
an Applied Biosystem with software version 3.1 (Ste-
pOne™, USA). The qPCR assay with the primer sets was 
optimized at the annealing temperature. The used Atg-5 
forward primer was 5′-ACG​ATG​ACC​TGT​GTC​GAA​
CT-3′, and the reverse primer was 5′-AAA​CCA​AAT​
CTC​ACT​AAC​ATC​TTC​T-3′. The Atg-7 forward primer 
was 5′-GAG​AGT​ACA​TCC​CCA​CCG​TC-3′, the reverse 
primer was 5′-AGG​GAT​CGT​ACA​CAC​CGA​CT-3′. Beta 
actin was used as a control housekeeping gene, its for-
ward primer was 5′-TGT​TTG​AGA​CCT​TCA​ACA​CC-3′, 

the reverse primer was 5′-CGC​TCA​TTG​CCG​ATA​GTG​
AT-3′. The relative quantitation was calculated according 
to Applied Bio system software.

Histological examination
The left ventricles were fixed in 10% formalin for 24  h, 
embedded in paraffin sections and sectioned at 4  mm 
according to the standard procedure. Sections were 
deparaffinized, hydrated and then stained with hematox-
ylin and eosin (H&E). A single observer performed all the 
histological examination. The inflammatory changes in 
hearts were semi-quantitatively scored and graded based 
on severity of changes as follows: Blood vessels: − = Aver-
age, + = Mildly dilated/congested, + + = Moder-
ately dilated/congested, + + + = Markedly dilated; 
Edema: − = No, + = Mild edema, + + = Moder-
ate, + + + = Marked; Hemorrhage: − = No, + = Present.

Statistical analysis
All variables were presented as means ± SEM. The one-
sample Kolmogorov–Smirnov test was used to test 
for normality of variables. All variables were found to 
be normally distributed. One-way analysis of variance 
(ANOVA) was used to determine the differences between 
groups. In the case of a significant F value (P < 0.05), a 
least significant difference test was used to find signifi-
cant intergroup differences. P values < 0.05 were con-
sidered statistically significant. All statistical data and 
statistical significance were performed by using SPSS sta-
tistical package (SPSS Inc.) version 20.0.1.

Results
Anthropometric measures
The initial and final body weight (BW), body mass index 
(BMI), and waist circumference (WC), all were signifi-
cantly higher in old group compared to adult rats. Also, 
the percentage change in body weight (% BW) was sig-
nificantly lower in old group compared to adult group. 
IF significantly decreased the % BW and % BMI in Old-
F-ISO group compared to both old and Old-ISO groups, 
becoming significantly lower than those of adult group. 
Visceral adipose tissue weight (VATW) and visceral adi-
pose tissue weight/body weight (VATW/BW) were not 
significantly different between old and adult groups. 
However, both were significantly decreased by IF in 
Old-F-ISO group in comparison with old, and Old-ISO 
groups, becoming even significantly lower than those of 
adult values (Table 1).

Cardiac parameters
As demonstrated in Fig. 1, the plasma level of cTnI was 
significantly higher in old group versus adult group. 
ISO administration significantly elevated troponin-I 
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and CK-MB in Old-ISO group compared to both old 
and adult groups. IF in Old-F-ISO group significantly 
decreased both troponin-I and CK-MB versus Old-ISO 
group, approaching those of the adult values.

The cardiac level of GSH was significantly lower in 
old group versus adult group, while the cardiac levels of 
MDA and TNF-α, as well as the mRNA expression of the 
cardiac autophagy marker Atg-5, were not significantly 
different. ISO administration significantly elevated the 
MDA, TNF-α, and the mRNA expression of Atg-5 in Old-
ISO group compared to both old and adult groups. IF in 
Old-F-ISO group significantly decreased the MDA and 
TNF-α in comparison with the Old-ISO group, reaching 
levels comparable to those of the adult group. Moreover, 
GSH showed a significant increase in Old-F-ISO com-
pared to old group. Additionally, the mRNA expression 
of Atg-5 showed a significant higher level in Old-F-ISO 
group when compared to both old and adult groups, but it 
was not significantly different from Old-ISO group.

Glucose homeostasis parameters and pancreatic 
autophagy marker
Old rats presented a significantly lower FI associated with 
a higher FPG (though being insignificant), compared 
to adult group. The mRNA expression of pancreatic 
autophagy marker Atg-7, the HOMA-IR and HOMA-
%B were not significantly different between old and adult 
groups (Fig. 2).

IF significantly decreased the FPG in Old-F-ISO ver-
sus old and Old-ISO groups. This was associated with a 

significant increase in the mRNA expression of pancre-
atic Atg-7 and HOMA-%B in Old-F-ISO group compared 
to old group, becoming significantly higher than that of 
the adult value. Also, IF significantly decreased HOMA-
IR in Old-F-ISO compared to adult group.

ISO administration resulted in a significant increase in 
the mRNA expression of pancreatic Atg-7 compared to 
old group, becoming significantly higher than that of the 
adult value and approached those of Old-F-ISO groups.

Histopathological results
As demonstrated in Fig. 3, the left ventricles of the adult 
group showed average muscle fibers with distinct cell 
borders and average centrally located nuclei. Left ven-
tricles of old group showed average pericardium, small 
areas of non-viable cardiac muscle fibers, and moderately 
congested blood vessels with mild peri-vascular edema. 
ISO administration moderately increases the histological 
inflammatory markers in Old-ISO rats. Hearts of Old-F-
ISO group showed moderately dilated blood vessels and 
mild edema. Left ventricles of Old-F-ISO group showed 
viable cardiac muscle fibers with distinct regular cell bor-
ders, and average nuclei, and mildly dilated congested 
blood vessels with mild peri-vascular edema. The histo-
pathological inflammatory score of different study group 
showed a mild to moderate inflammatory changes in left 
ventricles of old group versus adult group. IF attenuated 
the inflammatory markers in left ventricles of Old-F-ISO 
group.

Table 1  Anthropometric measures, visceral fat, glucose homeostasis parameters and pancreatic Atg-7 in the four study groups

Data are expressed as mean ± SEM

Number in parenthesis is the number of rats in each group

i, initial; f, final; % percentage change; BW, body weight; BMI, body mass index; WC, waist circumference; VTW, visceral tissue weight; VTW/BW; visceral tissue 
weight/body weight; FPG, fasting plasma glucose; FI, fasting insulin; HOMA-IR, homeostatic model assessment of insulin resistance; HOMA-%B, homeostatic model 
assessment of beta cell function
a Significance of difference from adult group by LSD test at P < 0.05
b Significance of difference from old group by LSD test at P < 0.05
c Significance of difference from old-ISO group by LSD test at P < 0.05

Adult (10) Old (6) Old-ISO (7) Old-F-ISO (7)

BWi (g) 198.50 ± 7.95 366.66 ± 15.95a 353.57 ± 17.75a 376.42 ± 16.57a

BWf (g) 217 ± 16.07 344.16 ± 19.51a 331.42 ± 20.16a 295 ± 14.67a

% BW (%) 8.85 ± 5.21 − 6.30 ± 2.40a − 6.21 ± 3.35a − 20.77 ± 5.26a,b.c

BMIi (g/cm2) 0.50 ± 0.02 0.62 ± 0.03a 0.61 ± 0.03a 0.67 ± 0.02a,c

BMIf (g/cm2) 0.53 ± 0.02 0.63 ± 0.03a 0.62 ± 0.04a 0.57 ± 0.01

% BMI (%) 5.23 ± 3.13 0.48 ± 2.63 0.69 ± 3.33 − 15.44 ± 2.30a,b,c

WCi (cm) 14.50 ± 0.26 18.33 ± 0.33a 18.57 ± 0.44a 18.07 ± 0.25a

WCf (cm) 13.20 ± 0.48 16.25 ± 0.70a 16.64 ± 0.47a 15.07 ± 0.56a

% WC − 8.93 ± 2.93 − 11.48 ± 2.77 − 9.99 ± 3.74 − 16.54 ± 3.21

VATW (mg) 2937.00 ± 414.72 3311.67 ± 719.35 3414.29 ± 794.71 275.71 ± 184.62a,b,c

VATW/BW(mg/gm) 13.27 ± 1.00 9.48 ± 1.88 10.05 ± 2.28 0.87 ± 0.59a,b,c
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Discussion
Aging undermines cardiovascular homeostasis by 
enhancing slow and progressive functional and structural 
alterations of the heart, along with increased oxidative 

stress and inflammation; all of which promote the suscep-
tibility to develop AMI [11, 24]. Old rats in the present 
study showed a significantly higher level of the troponin-
I associated with a significantly lower level of the heart 

Fig. 1  Changes in plasma level of Troponin-I, Creatine Kinase-MB (CK-MB), cardiac level of malondialdehyde (MDA), reduced glutathione reduced 
(GSH), tumor necrosis factor-alpha (TNF-α), and mRNA expression of cardiac autophagy related protein-5 (Atg-5) in the four study groups. Data are 
expressed as mean ± SEM. Number in parenthesis is the number of rats in each group. a Significance of difference from adult group by LSD test at 
P < 0.05. b Significance of difference from old group by LSD test at P < 0.05. c Significance of difference from Old-ISO group by LSD test at P < 0.05
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GSH compared to adult group, denoting cardiac tissue 
damage and diminished antioxidant defense mechanism 
in aged hearts. Also, histopathological examination of 
left ventricles of old group showed a mild to moderate 

inflammatory changes which could be explained by the 
decrease in the heart GSH and shift of oxidant/antioxi-
dant balance toward oxidative stress. 

Fig. 2  Changes in fasting plasma glucose (FPG), plasma level of fasting insulin (FI), mRNA expression of pancreatic autophagy marker (Atg-7), 
Homeostatic model assessment of insulin resistance (HOMA-IR), and Homeostatic model assessment of beta cell function (HOMA-%B), in the four 
study groups. Data are expressed as mean ± SEM. Number in parenthesis is the number of rats in each group. a Significance of difference from adult 
group by LSD test at P < 0.05. b Significance of difference from old group by LSD test at P < 0.05. c Significance of difference from Old-ISO group by 
LSD test at P < 0.05
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Fig. 3  Photomicrograph of H&E-stained left ventricle sections of the four studied groups. A Adult group shows average muscle fibers with distinct 
cell borders (black arrows), and average centrally located nuclei (red arrow) (H&E X 400). B Old group shows most of cardiac muscle fibers with 
indistinct irregular cell borders and small pyknotic (red arrow) or no nuclei (green arrow), and mildly congested blood vessels (yellow arrow) with 
mild peri-vascular edema (purple arrow) (H&E X 400). C Old-ISO group shows few scattered cardiac muscle fibers with distinct irregular cell borders 
(black arrow), bright eosinophilic cytoplasm and small pyknotic (red arrow) or no nuclei (green arrow), and mildly dilated congested blood vessels 
(yellow arrow) with mild peri-vascular edema (purple arrow) (H&E X 400). D Old-F-ISO group shows viable cardiac muscle fibers with distinct regular 
cell borders (black arrow), and average nuclei (red arrow), and mildly dilated congested blood vessels (yellow arrow) with mild peri-vascular edema 
(purple arrow) (H&E X 400). E The histological inflammatory score
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Decreased autophagy has been implicated in enhanc-
ing cardiovascular aging and increased liability to car-
diovascular diseases [10, 25]. Impaired autophagic 
degradation of misfolded proteins produces mitochon-
drial injury, oxidative stress, increased inflammation, 
decreased ventricular contraction, and reduced toler-
ance to ischemic stress [26]. Old rats in the current work 
did not exhibit any significant change in mRNA expres-
sion of the cardiac autophagy marker, Atg-5, versus adult 
group. However, IF for 4 weeks significantly upregulated 
the cardiac autophagy, as evidenced by the significant 
increase in the mRNA expression of heart Atg-5 in Old-
F-ISO group compared to old group, reaching levels sig-
nificantly higher than those of adult values. Such chronic 
activation of the cardiac autophagy was associated with 
a significant decrease in serum levels of troponin-I, 
CK-MB in Old-F-ISO group compared to Old-ISO rats, 
approaching the levels of adult group. These results indi-
cate that long-term activation of autophagy by IF could 
provide a potential cardioprotective effect against acute 
AMI in old rats. In line with these findings, Godar et al. 
demonstrated that IF protects against cardiac injury in 
mice (during ischemia/reperfusion) through increasing 
autophagic flux by stimulating nuclear translocation of 
TFEB, a master regulator of autophagy-lysosome gene 
expression networks [27].

Earlier studies have considered energy deprivation, 
oxidative stress and inflammation as serious events that 
take place during AMI and exaggerate cardiac injury. 
Lack of energy causes inhibition of Na+–K+ pump, 
increase in intracellular level of Ca2+, and mitochondrial 
dysfunction; resulting in activation of proteases, cleav-
age of anchoring cytoskeletal proteins, and progressive 
increase in cell membrane permeability with release of 
intracellular troponin-I and creatine kinase into the cir-
culation [28, 29]. Moreover, mitochondrial damage dur-
ing ischemia is critical incident, represents a key source 
of ROS that enhance oxidative cardiac injury [30, 31]. 
Also, recruitment of neutrophils and macrophages to 
the area of infarction activates the inflammatory reaction 
and promotes the oxidative stress, exaggerating the tissue 
damage [32, 33].

Autophagy is a naturally regulated process of lyso-
some-dependent turnover of damaged proteins and 
organelles that allows orderly degradation and recycling 
of cellular components [34]. It begins with the engulf-
ment of lipid droplets, ribosomes, soluble proteins, or 
organelles in a double membrane autophagosomes; that 
when combined with lysosomes, continued enzymolysis 
occurs [35]. The products of autophagy, basic new nutri-
ents, such as lipids, amino acids, and sugars, are then 
transported into the cytoplasm, where they are used as 
a source of energy [36]. It is activated by starvation or 

metabolic stress for the maintenance of tissue functions 
and homeostasis [37]. Moreover, mitophagy, selective 
mitochondrial autophagy, is the only intracellular degra-
dative mechanism for removing damaged mitochondria 
and their harmful ROS [38, 39]. Also, autophagy was 
found to have an anti-inflammatory effect that attenu-
ates the progression of cardiac damage [10, 25]. Hence, 
enhanced cardiac autophagy in Old-F-ISO group, in the 
current work, might provide a cardioprotective effect 
in response to ISO administration possibly by ensuring 
adequate nutrient supply under the circumstances of 
energy depletion, alleviating the local inflammatory reac-
tion and by decreasing the cardiac oxidative tissue dam-
age, perhaps via removing the damaged mitochondria, a 
fundamental source of ROS. In line with this assumption, 
the cardiac levels of MDA and TNF-α were significantly 
decreased in Old-F-ISO compared to Old-ISO group, in 
concomitance with increased expression of heart Atg-5. 
Additionally, Old-F-ISO group exhibited a significantly 
higher heart levels of the antioxidant enzyme, GSH, com-
pared to old group. Moreover, histopathological studies, 
herein, revealed that IF can alleviate the local inflam-
matory response in Old-F-ISO versus Old-ISO group as 
manifested histologically by the attenuation of edema. 

Furthermore, attenuation of autophagy in beta cells of 
pancreas was recorded during aging and was assumed 
to induce age-related diabetic changes such as decreased 
insulin secretion, decreased beta cell mass and func-
tion, and hyperglycemia [40, 41]; well-known risk fac-
tors for ischemic heart disease [42]. Diabetes mellitus is 
known to proceed in stages characterized by alteration 
in blood glucose level, decrease in beta cell mass and 
function which progress gradually to significant hyper-
glycemia and frank diabetes with ketosis [43]. Although 
old rats in the present study did not present full picture 
of frank diabetes mellitus, they exhibited some criteria 
of age-related diabetic changes, manifested as a signifi-
cant decrease in serum insulin level compared to adult 
group, associated with high FPG and low HOMA-B%. 
IF significantly upregulated the mRNA expression of 
Atg-7 in the pancreas of Old-F-ISO group versus old 
rats, reaching a level significantly higher than adult val-
ues, reflecting an increase in pancreatic autophagy. This 
was associated with a significant decrease in FPG in Old-
F-ISO group when compared to old or Old-ISO groups. 
Also, enhancement of beta cell function was evident by 
IF, manifested as a significant increase in HOMA-B% in 
Old-F-ISO compared to old group, reaching a level sig-
nificantly higher than that of adult rats. These observa-
tions suggest improved glycemic control by IF which 
might be induced by activation of pancreatic autophagy.

Autophagy has a fundamental homeostatic role nec-
essary to maintain the structure, mass and function of 
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pancreatic beta cells [44]. Hyperglycemia was reported 
to produce endoplasmic reticulum stress in β-cells [45], 
which enhances intracellular accumulation of misfolded 
proteins and promotes apoptosis [46]. Autophagy was 
found to have a role in the removal of harmful misfolded 
protein aggregates by directing cytosolic contents to the 
lysosome for degradation [47].

Hyperglycemia is a serious risk factor for coronary heart 
disease and is strongly related to the high mortality rate in 
patients with acute MI [48]. Previous studies reported that 
hyperglycemia can produce a direct damaging effect on 
ischemic myocardium by reducing collateral circulation, 
increasing infarct size [49], and enhancing apoptosis [50]. 
Controlling hyperglycemia was found to produce a sig-
nificant reduction in the morbidity and mortality of acute 
AMI patient [51]. Therefore, upregulation of the pancreatic 
autophagy by IF, in the present study, might assign an addi-
tional protective mechanism against acute AMI induced by 
ISO via amelioration of the hyperglycemia in old rats.

The present non-significant changes in heart and pan-
creatic autophagy in old group versus adult rats, despite 
the presence of cardiac injury as well as diabetic changes, 
notify that age-related cardiovascular and metabolic 
alteration could be mediated by other risk factors rather 
than altered autophagy. In the present study, an obvi-
ous increase in obesity markers (significant increase in 
final BW, BMI and WC) was significantly recorded in old 
versus adult group. IF decreased % BW, % BMI, VATW 
and VATW/BW in Old-F-ISO group when compared to 
old, Old-ISO and adult groups. These findings indicate a 
decrease in overall and visceral obesity by IF in old rats.

The association between obesity and aging has been 
demonstrated by previous studies [52, 53]. Obesity, 
particularly visceral obesity, is the cornerstone for 
metabolic disorders which provokes the onset of insu-
lin resistance, diabetes mellitus, hypertension, and 
dyslipidemia [54, 55], imposing a great burden on the 
cardiovascular system, and increasing the susceptibility 
to AMI during aging [56]. IF diet regimens were found 
to reduce the risk of obesity both in animal [57] and 
human studies [58]. IF was found to improve indicators 
of coronary heart disease in obese men and women, 
such as reducing body weight, waist circumference, and 
body fat mass [59]. Previous reports have recorded a 
cardioprotective impact of IF diet and attributed such 
effect to the reduction in fat tissue, especially visceral 
fat tissue [60, 61]. Moreover, IF increases the utiliza-
tion of fat, directing the body metabolism toward a 
ketogenic state that increases weight loss, as processing 
ketones consumes high energy [62]. Therefore, attenu-
ation of the age-related obesity, herein, represents 
another cardioprotective mechanism of IF, alleviating 
the severity of AMI.

Importantly, Old-ISO group, in the present study, 
presented a significantly higher levels of cardiac injury 
markers (Troponin-I and CK-MB); cardiac levels of 
oxidative stress marker (MDA) and proinflammatory 
marker (TNF-α) in association with a significant increase 
in mRNA expression of heart Atg-5 versus old and adult 
groups. Similarly, pancreatic autophagy marker Atg-7 
was significantly increased in Old-ISO group in compari-
son with both old and adult groups. Of note, autophagy, 
together with apoptosis and necrosis, plays a dichoto-
mous ‘survival and death’ role in cell homeostasis [63]. 
Despite, it is activated in ischemic stress in attempt to 
conserve cardiomyocyte in face of ischemic injury [64], 
excessive autophagy may be harmful by increasing cell 
death, a process called autosis [55]. Moreover, exces-
sive activation of autophagy may lead to a detrimental 
effect on the heart during cardiac ischemia, as well as 
during the reperfusion stage [65]. Additionally, over-
stimulation of autophagy was found to impair beta cell 
function in  vitro and in  vivo studies [66]. Unregulated 
autophagy can be deleterious and result in autophagic 
cell death [67]. Therefore, the current cardiac oxidative 
stress, inflammation, and tissue damage in association 
with upregulation of Atg-5, observed in Old-ISO group, 
might be explained by the acute stimulation of autophagy 
during acute cardiac ischemia. Likewise, the pancreatic 
stress induced by ischemic changes during acute AMI 
in Old-ISO group sharply overstimulated the pancreatic 
autophagy which might damage beta cells, particularly, 
these rats presented a significantly high FPG compared 
to Old-F-ISO group. On the other hand, long-term acti-
vation of both heart and pancreatic autophagy mark-
ers by IF, herein, afford a protective mechanisms against 
acute cardiac insult in Old-F-ISO group.

Conclusions
IF increases the tolerance of aged myocardium to acute 
cardiac insult induced by ISO administration in old rats, 
possibly by activation of both cardiac and pancreatic 
autophagy, ensuring sufficient energy supply to the heart, 
decreasing the cardiac oxidative stress and inflammation, 
and alleviating the age-related diabetic changes. Also, 
amelioration of age-related overall and visceral obesity 
could be an additional mechanism of IF, which afford 
protection against AMI. Hence, IF could be a dietary 
lifestyle modification for attenuation of the susceptibil-
ity to acute AMI in aged population. Moreover, this study 
indicates the controversial effect of autophagy, provid-
ing evidence that chronic rather than acute activation of 
both cardiac and pancreatic autophagy may potentially 
confer such cardioprotective effect against AMI. Future 
studies are required to further investigate the difference 
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between acute and chronic activation of autophagy and 
their effects on different body systems in elderly.
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