Gersh BJ, Sliwa K, Mayosi BM, Yusuf S (2010) Novel therapeutic concepts: the epidemic of cardiovascular disease in the developing world: global implications. Eur Heart J. 31(6):642–648
Article
PubMed
Google Scholar
Subban V, Lakshmanan A, Victor SM, Pakshirajan B, Udayakumaran K, Gnanaraj A et al (2014) Outcome of primary PCI - an Indian tertiary care center experience. Indian Heart J. 66(1):25–30
Article
PubMed
PubMed Central
Google Scholar
Alexander T, Mehta S, Mullasari A, Nallamothu BK (2012) Systems of care for ST-elevation myocardial infarction in India. Heart. 98(1):15–17
Article
PubMed
Google Scholar
Keeley EC, Boura JA, Grines CL (2003) Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet. 361(9351):13–20
Article
PubMed
Google Scholar
Alexander T, Mullasari AS, Kaifoszova Z, Khot UN, Nallamothu B, Ramana RG et al (2015) Framework for a National STEMI Program: consensus document developed by STEMI INDIA, Cardiological Society of India and Association Physicians of India. Indian Heart J. 67(5):497–502
Article
PubMed
PubMed Central
Google Scholar
Xavier D, Pais P, Devereaux PJ, Xie C, Prabhakaran D, Reddy KS et al (2008) Treatment and outcomes of acute coronary syndromes in India (CREATE): a prospective analysis of registry data. Lancet. 371(9622):1435–1442
Article
PubMed
Google Scholar
Negi PC, Merwaha R, Panday D, Chauhan V, Guleri R (2016) Multicenter HP ACS Registry. Indian Heart J. 68(2):118–127
Article
PubMed
PubMed Central
Google Scholar
Mohanan PP, Mathew R, Harikrishnan S, Krishnan MN, Zachariah G, Joseph J et al (2013) Presentation, management, and outcomes of 25 748 acute coronary syndrome admissions in Kerala, India: results from the Kerala ACS Registry. Eur Heart J. 34(2):121–129
Article
PubMed
Google Scholar
Lincoff AM, Topol EJ, Califf RM, Sigmon KN, Lee KL, Ohman EM et al (1995) Significance of a coronary artery with thrombolysis in myocardial infarction grade 2 flow “patency” (outcome in the thrombolysis and angioplasty in myocardial infarction trials). Thrombolysis and Angioplasty in Myocardial Infarction Study Group. Am J Cardiol. 75(14):871–876
Article
CAS
PubMed
Google Scholar
Stone GW, Cox D, Garcia E, Brodie BR, Morice MC, Griffin J et al (2001) Normal flow (TIMI-3) before mechanical reperfusion therapy is an independent determinant of survival in acute myocardial infarction: analysis from the primary angioplasty in myocardial infarction trials. Circulation. 104(6):636–641
Article
CAS
PubMed
Google Scholar
Zeymer U, Huber K, Fu Y, Ross A, Granger C, Goldstein P et al (2012) Impact of TIMI 3 patency before primary percutaneous coronary intervention for ST-elevation myocardial infarction on clinical outcome: results from the ASSENT-4 PCI study. Eur Heart J Acute Cardiovasc Care. 1(2):136–142
Article
PubMed
PubMed Central
Google Scholar
Barbagelata NA, Granger CB, Oqueli E, Suarez LD, Borruel M, Topol EJ et al (1997) TIMI grade 3 flow and reocclusion after intravenous thrombolytic therapy: a pooled analysis. Am Heart J. 133(3):273–282
Article
CAS
PubMed
Google Scholar
Hong YJ, Jeong MH, Choi YH, Ko JS, Lee MG, Kang WY et al (2011) Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis. Eur Heart J. 32(16):2059–2066
Article
PubMed
Google Scholar
Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, Surmely JF et al (2006) Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol. 47(12):2405–2412
Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ et al (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 93(5):879–888
Article
CAS
PubMed
Google Scholar
Gibson CM, de Lemos JA, Murphy SA, Marble SJ, McCabe CH, Cannon CP et al (2001) Combination therapy with abciximab reduces angiographically evident thrombus in acute myocardial infarction: a TIMI 14 substudy. Circulation. 103(21):2550–2554
Article
CAS
PubMed
Google Scholar
Rentrop KP, Cohen M, Blanke H, Phillips RA (1985) Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol. 5(3):587–592
Article
CAS
PubMed
Google Scholar
Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ et al (2001) American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 37(5):1478–1492
Article
CAS
PubMed
Google Scholar
Rodriguez-Granillo GA, Serruys PW, Garcia-Garcia HM, Aoki J, Valgimigli M, van Mieghem CA et al (2006) Coronary artery remodelling is related to plaque composition. Heart. 92(3):388–391
Article
CAS
PubMed
Google Scholar
Maehara A, Cristea E, Mintz GS, Lansky AJ, Dressler O, Biro S et al (2012) Definitions and methodology for the grayscale and radiofrequency intravascular ultrasound and coronary angiographic analyses. JACC Cardiovasc Imaging. 5(3 Suppl):S1–S9
Article
PubMed
Google Scholar
Insull W Jr (2009) The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med. 122(1 Suppl):S3–S14
Article
CAS
PubMed
Google Scholar
Partida RA, Libby P, Crea F, Jang IK (2018) Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J. 39(22):2070–2076
Article
PubMed
PubMed Central
Google Scholar
Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol. 47(8 Suppl):C13–C18
Article
CAS
PubMed
Google Scholar
Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res. 114(12):1852–1866
Article
CAS
PubMed
Google Scholar
Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R (2010) Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 30(7):1282–1292
Article
CAS
PubMed
Google Scholar
Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 349(24):2316–2325
Article
CAS
PubMed
Google Scholar
Toutouzas K, Benetos G, Karanasos A, Chatzizisis YS, Giannopoulos AA, Tousoulis D (2015) Vulnerable plaque imaging: updates on new pathobiological mechanisms. Eur Heart J. 36(45):3147–3154
Article
CAS
PubMed
Google Scholar
Otsuka F, Yasuda S, Noguchi T, Ishibashi-Ueda H (2016) Pathology of coronary atherosclerosis and thrombosis. Cardiovasc Diagn Ther. 6(4):396–408
Article
PubMed
PubMed Central
Google Scholar
Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation. 92(3):657–671
Article
CAS
PubMed
Google Scholar
Alfonso F, Virmani R (2011) New morphological insights on coronary plaque rupture: bridging the gap from anatomy to clinical presentation? JACC Cardiovasc Interv. 4(1):83–86
Article
PubMed
Google Scholar
Zheng G, Li Y, Takayama T, Nishida T, Sudo M, Haruta H et al (2016) The spatial distribution of plaque vulnerabilities in patients with acute myocardial infarction. PLoS One. 11(3):e0152825
Article
PubMed
PubMed Central
CAS
Google Scholar
de Graaf MA, van Velzen JE, de Graaf FR, Schuijf JD, Dijkstra J, Bax JJ et al (2013) The maximum necrotic core area is most often located proximally to the site of most severe narrowing: a virtual histology intravascular ultrasound study. Heart Vessels. 28(2):166–172
Article
PubMed
Google Scholar
Kaple RK, Maehara A, Sano K, Missel E, Castellanos C, Tsujita K et al (2009) The axial distribution of lesion-site atherosclerotic plaque components: an in vivo volumetric intravascular ultrasound radio-frequency analysis of lumen stenosis, necrotic core and vessel remodeling. Ultrasound Med Biol. 35(4):550–557
Article
PubMed
Google Scholar
Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 20(5):1262–1275
Article
CAS
PubMed
Google Scholar
Ivanovic M, Rancic M, Rdzanek A, Filipjak KJ, Opolski G, Cvetanovic J (2013) Virtual histology study of atherosclerotic plaque composition in patients with stable angina and acute phase of acute coronary syndromes without ST segment elevation. Srp Arh Celok Lek. 141(5-6):308–314
Article
PubMed
Google Scholar
Hong MK, Mintz GS, Lee CW, Suh J, Kim JH, Park DW et al (2007) Comparison of virtual histology to intravascular ultrasound of culprit coronary lesions in acute coronary syndrome and target coronary lesions in stable angina pectoris. Am J Cardiol. 100(6):953–959
Article
PubMed
Google Scholar
Badimon L, Vilahur G (2014) Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 276(6):618–632
Article
CAS
PubMed
Google Scholar
Kotani J, Nanto S, Mintz GS, Kitakaze M, Ohara T, Morozumi T et al (2002) Plaque gruel of atheromatous coronary lesion may contribute to the no-reflow phenomenon in patients with acute coronary syndrome. Circulation. 106(13):1672–1677
Article
PubMed
Google Scholar
Iijima R, Shinji H, Ikeda N, Itaya H, Makino K, Funatsu A et al (2006) Comparison of coronary arterial finding by intravascular ultrasound in patients with “transient no-reflow” versus “reflow” during percutaneous coronary intervention in acute coronary syndrome. Am J Cardiol. 97(1):29–33
Article
PubMed
Google Scholar
Soeda T, Higuma T, Abe N, Yamada M, Yokoyama H, Shibutani S et al (2017) Morphological predictors for no reflow phenomenon after primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction caused by plaque rupture. Eur Heart J Cardiovasc Imaging. 18(1):103–110
Article
PubMed
Google Scholar
Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation. 2000;101(6):598-603.
Hong YJ, Jeong MH, Choi YH, Ko JS, Lee MG, Kang WY et al (2009) Positive remodeling is associated with more plaque vulnerability and higher frequency of plaque prolapse accompanied with post-procedural cardiac enzyme elevation compared with intermediate/negative remodeling in patients with acute myocardial infarction. J Cardiol. 53(2):278–287
Article
PubMed
Google Scholar
Varnava AM, Mills PG, Davies MJ (2002) Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 105(8):939–943
Article
PubMed
Google Scholar
Watanabe T, Nanto S, Uematsu M, Ohara T, Morozumi T, Kotani J et al (2003) Prediction of no-reflow phenomenon after successful percutaneous coronary intervention in patients with acute myocardial infarction: intravascular ultrasound findings. Circ J. 67(8):667–671
Article
PubMed
Google Scholar
Reddy S, Rao KR, Kashyap JR, Kadiyala V, Reddy H, Malhotra S et al (2020) Impact of plaque burden and composition on coronary slow flow in ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention: intravascular ultrasound and virtual histology analysis. Acta Cardiol.:1–11
Giannopoulos G, Pappas L, Synetos A, Hahalis G, Raisakis K, Papadimitriou C et al (2014) Association of virtual histology characteristics of the culprit plaque with post-fibrinolysis flow restoration in ST-elevation myocardial infarction. Int J Cardiol. 174(3):678–682
Article
PubMed
Google Scholar
CFd S, Maehara A, Lima E, LdFC G, Carvalho AC, CMR A et al (2014) Morphological and tissue characterization of culprit lesions in patients with ST-segment elevation myocardial infarction after thrombolytic therapy. Analysis with Gray scale Intravascular Ultrasound and iMAPTM Technology. Rev Bras Cardiol Invasiva 22(3):225–232
Article
Google Scholar
Toutouzas K, Tsiamis E, Karanasos A, Drakopoulou M, Synetos A, Tsioufis C et al (2010) Morphological characteristics of culprit atheromatic plaque are associated with coronary flow after thrombolytic therapy: new implications of optical coherence tomography from a multicenter study. JACC Cardiovasc Interv. 3(5):507–514
Article
PubMed
Google Scholar
Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D et al (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 110(22):3424–3429
Article
PubMed
Google Scholar
Sangiorgi G, Rumberger JA, Severson A, Edwards WD, Gregoire J, Fitzpatrick LA et al (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol. 31(1):126–133
Article
CAS
PubMed
Google Scholar
Madhavan MV, Tarigopula M, Mintz GS, Maehara A, Stone GW, Genereux P (2014) Coronary artery calcification: pathogenesis and prognostic implications. J Am Coll Cardiol. 63(17):1703–1714
Article
CAS
PubMed
Google Scholar
Abedin M, Tintut Y, Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 24(7):1161–1170
Article
CAS
PubMed
Google Scholar
Mizukoshi M, Kubo T, Takarada S, Kitabata H, Ino Y, Tanimoto T et al (2013) Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol. 112(1):34–40
Article
CAS
PubMed
Google Scholar
Ehara S, Kobayashi Y, Yoshiyama M, Ueda M, Yoshikawa J (2006) Coronary artery calcification revisited. J Atheroscler Thromb. 13(1):31–37
Article
PubMed
Google Scholar
Sakaguchi M, Hasegawa T, Ehara S, Matsumoto K, Mizutani K, Iguchi T et al (2016) New insights into spotty calcification and plaque rupture in acute coronary syndrome: an optical coherence tomography study. Heart Vessels. 31(12):1915–1922
Article
PubMed
Google Scholar