Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C (2020) Cardiac and arrhythmic complications in patients with COVID-19. J Cardiovasc Electrophysiol 31(5):1003–1008
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Wang Z, Tse G, Zhang L, Wan EY, Guo Y et al (2020) Cardiac arrhythmias in patients with COVID-19. J Arrhythmia 36(5):827–836
Article
Google Scholar
Dherange P, Lang J, Qian P, Oberfeld B, Sauer WH, Koplan B, Tedrow U (2020) Arrhythmias and COVID-19: A review. JACC: Clin Electrophysiol 6:1193
Google Scholar
Malaty M, Kayes T, Amarasekera AT, Kodsi M, MacIntyre CR, Tan TC (2021) Incidence and treatment of arrhythmias secondary to coronavirus infection in humans: a systematic review. Eur J Clin Investig 51(2):e13428
Article
CAS
Google Scholar
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 323(11):1061–1069
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506
Article
CAS
PubMed
PubMed Central
Google Scholar
Gopinathannair R, Merchant FM, Lakkireddy DR, Etheridge SP, Feigofsky S, Han JK, Kabra R, Natale A, Poe S, Saha SA, Russo AM (2020) COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol 59:329–336
Article
PubMed
PubMed Central
Google Scholar
Colon CM, Barrios JG, Chiles JW, McElwee SK, Russell DW, Maddox WR, Kay GN (2020) Atrial arrhythmias in COVID-19 patients. Clin Electrophysiol 6(9):1189–1190
Article
Google Scholar
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395(10229):1054–1062
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z (2020) Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 5(7):811–818
Article
PubMed
Google Scholar
Kir D, Mohan C, Sancassani R (2020) Heart brake: an unusual cardiac manifestation of COVID-19. Case Rep 2(9):1252–1255
Google Scholar
Peigh G, Leya MV, Baman JR, Cantey EP, Knight BP, Flaherty JD (2020) Novel coronavirus 19 (COVID-19) associated sinus node dysfunction: a case series. Eur Heart J-Case Rep 4:1
Article
PubMed
PubMed Central
Google Scholar
Xie J, Covassin N, Fan Z, Singh P, Gao W, Li G, Kara T, Somers VK (2020) Association between hypoxemia and mortality in patients with COVID-19. In: Mayo Clinic proceedings. Elsevier, vol 95, No. 6, pp 1138–1147
Gibson PG, Qin L, Puah S (2020) COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. Med J Aust 213(2):54–56
Article
PubMed
Google Scholar
Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter-Stoltzfus A, Laurence J (2020) Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 1(220):1–3
Article
CAS
Google Scholar
Nitsure M, Sarangi B, Shankar GH, Reddy VS, Walimbe A, Sharma V, Prayag S (2020) Mechanisms of Hypoxia in COVID-19 Patients: A Pathophysiologic Reflection. Indian J Crit Care Med: Peer-rev Off Publ Indian Soc Crit Care Med 24(10):967
Article
CAS
Google Scholar
Tobin MJ, Laghi F, Jubran A (2020) Why COVID-19 silent hypoxemia is baffling to physicians. Am J Respir Crit Care Med 202(3):356–360
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanagala R, Murali NS, Friedman PA, Ammash NM, Gersh BJ, Ballman KV, Shamsuzzaman ASM, Somers VK (2003) Obstructive sleep apnea and the recurrence of atrial fibrillation. Circulation 107(20):2589–2594
Article
PubMed
Google Scholar
Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol Cell Physiol 275(1):C1-24
Article
CAS
Google Scholar
Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321
Article
CAS
PubMed
Google Scholar
Hool LC (2005) Acute hypoxia differentially regulates K+ channels. Implications with respect to cardiac arrhythmia. Eur Biophys J 34(5):369–376
Article
CAS
PubMed
Google Scholar
Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis: accumulation of SUMO1 and-2 conjugates is increased by stress. J Biol Chem 278(9):6862–6872
Article
CAS
PubMed
Google Scholar
Ju YK, Saint DA, Gage PW (1996) Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 497(2):337–347
Article
CAS
PubMed
PubMed Central
Google Scholar
Hammarström AK, Gage PW (2002) Hypoxia and persistent sodium current. Eur Biophys J 31(5):323–330
Article
PubMed
CAS
Google Scholar
Voelkel NF, Hegstrand LI, Reeves JT, McMurty IF, Molinoff PB (1981) Effects of hypoxia on density of beta-adrenergic receptors. J Appl Physiol 50(2):363–366
Article
CAS
PubMed
Google Scholar
Sinha P, Matthay MA, Calfee CS (2020) Is a “cytokine storm” relevant to COVID-19? JAMA Intern Med 180(9):1152–1154
Article
CAS
PubMed
Google Scholar
Staedtke V, Bai RY, Kim K, Darvas M, Davila ML, Riggins GJ, Rothman PB, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S (2018) Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 564(7735):273–277
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazzerini PE, Boutjdir M, Capecchi PL (2020) COVID-19, arrhythmic risk, and inflammation: mind the gap! Circulation 142(1):7–9
Article
CAS
PubMed
Google Scholar
Mukerjee S, Gao H, Xu J, Sato R, Zsombok A, Lazartigues E (2019) ACE2 and ADAM17 interaction regulates the activity of presympathetic neurons. Hypertension 74(5):1181–1191
Article
CAS
PubMed
Google Scholar
Gubbi S, Nazari MA, Taieb D, Klubo-Gwiezdzinska J, Pacak K (2020) Catecholamine physiology and its implications in patients with COVID-19. Lancet Diabetes Endocrinol 8:978
Article
CAS
PubMed
PubMed Central
Google Scholar
Verkerk AO, Wilders R, van Borren MM, Peters RJ, Broekhuis E, Lam K et al (2007) Pacemaker current (If) in the human sinoatrial node. Eur Heart J 28:2472–2478
Article
PubMed
Google Scholar
Lu Z, Nie L, He B, Yu L, Salim M, Huang B, Cui B, He W, Wu W, Jiang H (2013) Increase in vulnerability of atrial fibrillation in an acute intermittent hypoxia model: importance of autonomic imbalance. Auton Neurosci 177(2):148–153
Article
PubMed
Google Scholar
Zhang D, She J, Zhang Z, Yu M (2014) Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization. Biomed Eng Online 13(1):1–2
Article
Google Scholar
Manolis AA, Manolis TA, Apostolopoulos EJ, Apostolaki NE, Melita H, Manolis AS (2020) The role of the autonomic nervous system in cardiac arrhythmias: The neuro-cardiac axis, more foe than friend? Trends Cardiovasc Med 31:290
Article
PubMed
CAS
Google Scholar
Timmermans C, Smeets JL, Rodriguez LM, Vrouchos G, van den Dool A, Wellens HJ (1995) Aborted sudden death in the Wolff-Parkinson-White syndrome. Am J Cardiol 76(7):492–494
Article
CAS
PubMed
Google Scholar
Rédéric Roche F, Reynaud C, Pichot V, Duverney D, Rédéric Costes F, Garet M, Gaspoz JM, Barthélémy JC (2003) Effect of acute hypoxia on QT rate dependence and corrected QT interval in healthy subjects. Am J Cardiol 91(7):916–919
Article
Google Scholar
Carlson LA, Liljedahl SO, Verdy M, Wirsén C (1964) Unresponsiveness to the lipid mobilizing action of catecholamines in vivo and in vitro in the domestic fowl. Metabolism 13(3):227–231
Article
CAS
PubMed
Google Scholar
Oliver EF, Opie LH (1994) Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. Lancet 343(8890):155–158
Article
CAS
PubMed
Google Scholar
Babapoor-Farrokhran S, Batnyam U, Wiener PC, Kanjanahattakij N, Khraisha O, Amanullah A, Mainigi SK (2020) Atrioventricular and sinus node dysfunction in stable COVID-19 patients. SN Compreh Clin Med 2(11):1955–1958
Article
CAS
Google Scholar
Lasrado N, Reddy J (2020) An overview of the immune mechanisms of viral myocarditis. Rev Med Virol 30(6):1–4
Article
CAS
PubMed
Google Scholar
Aromolaran AS, Srivastava U, Alí A, Chahine M, Lazaro D, El-Sherif N, Capecchi PL, Laghi-Pasini F, Lazzerini PE, Boutjdir M (2018) Interleukin-6 inhibition of hERG underlies risk for acquired long QT in cardiac and systemic inflammation. PLoS ONE 13(12):e0208321
Article
PubMed
PubMed Central
Google Scholar
Timmermans PB (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251
CAS
PubMed
Google Scholar
Harada K, Komuro I, Hayashi D, Sugaya T, Murakami K, Yazaki Y (1998) Angiotensin II type 1a receptor is involved in the occurrence of reperfusion arrhythmias. Circulation 97(4):315–317
Article
CAS
PubMed
Google Scholar
Patlolla V, Alsheikh-Ali AA, Al-Ahmad AM (2006) The renin-angiotensin system: a therapeutic target in atrial fibrillation. Pacing Clin Electrophysiol 29(9):1006–1012
Article
PubMed
Google Scholar
Iravanian S, Dudley SC Jr (2008) The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm 5(6):S12–S17
Article
PubMed
PubMed Central
Google Scholar
Bénitah JP, Vassort G (1999) Aldosterone upregulates Ca2+ current in adult rat cardiomyocytes. Circ Res 85(12):1139–1145
Article
PubMed
Google Scholar
Bénitah JP, Perrier E, Gómez AM, Vassort G (2001) Effects of aldosterone on transient outward K+ current density in rat ventricular myocytes. J Physiol 537(1):151–160
Article
PubMed
PubMed Central
Google Scholar
Braiteh N, ur Rehman W, Alom M, Skovira V, Breiteh N, Rehman I, Yarkoni A, Kahsou H, Rehman A, (2020) Decrease in acute coronary syndrome presentations during the COVID-19 pandemic in upstate New York. Am Heart J 226:147–151
Article
CAS
PubMed
PubMed Central
Google Scholar
Minhas AS, Scheel P, Garibaldi B, Liu G, Horton M, Jennings M, Jones SR, Michos ED, Hays AG (2020) Takotsubo syndrome in the setting of COVID-19. Case Rep 2(9):1321–1325
Google Scholar
Jesel L, Berthon C, Messas N, Lim HS, Girardey M, Marzak H, Marchandot B, Trinh A, Ohlmann P, Morel O (2018) Ventricular arrhythmias and sudden cardiac arrest in Takotsubo cardiomyopathy: incidence, predictive factors, and clinical implications. Heart Rhythm 15(8):1171–1178
Article
PubMed
Google Scholar
García-Rodríguez D, Remior P, García-Izquierdo E, Toquero J, Castro V, Fernández Lozano I (2021) Drug-induced QT prolongation in COVID-19 pneumonia: influence on in-hospital survival. Rev Esp Cardiol 74:111–112
Article
PubMed
Google Scholar
Siqueira-Batista R, Ramos Júnior AN, Pessanha BS, Sforza-de-Almeida MP, Potsch DF (1998) Chloroquine and cardiac arrhythmia: case report. East Afr Med J 75(2):117–119
CAS
PubMed
Google Scholar
Capel RA, Herring N, Kalla M, Yavari A, Mirams GR, Douglas G et al (2015) Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential. Hear Rhythm 12(10):2186–2194
Article
Google Scholar
Giudicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ (2020) Urgent guidance for navigating and circumventing the QTc-Prolonging and Torsadogenic potential of possible pharmacotherapies for coronavirus disease 19 (COVID-19). Mayo Clin Proc 95(6):1213–1221
Article
CAS
PubMed
Google Scholar
Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L (2020) Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med 46(7):1339–1348. https://doi.org/10.1007/s00134-020-06153-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Menshawey R, Menshawey E, Alserr AHK, Abdelmassih AF (2020) Low iron mitigates viral survival: insights from evolution, genetics, and pandemics—a review of current hypothesis. Egypt J Med Hum Genet 21(1):75
Article
Google Scholar
Henriksen LF, Petri A-S, Hasselbalch HC, Kanters JK, Ellervik C (2016) Increased iron stores prolong the QT interval - a general population study including 20 261 individuals and meta-analysis of thalassaemia major. Br J Haematol 174(5):776–785
Article
CAS
PubMed
Google Scholar
Baldi E, Sechi GM, Mare C, Canevari F, Brancaglione A, Primi R, Klersy C, Palo A, Contri E, Ronchi V, Beretta G (2020) Out-of-hospital cardiac arrest during the Covid-19 outbreak in Italy. N Engl J Med 383(5):496–498
Article
PubMed
Google Scholar
Marijon E, Karam N, Jost D, Perrot D, Frattini B, Derkenne C, Sharifzadehgan A, Waldmann V, Beganton F, Narayanan K, Lafont A (2020) Out-of-hospital cardiac arrest during the COVID-19 pandemic in Paris, France: a population-based, observational study. Lancet Public Health 5(8):e437–e443
Article
PubMed
PubMed Central
Google Scholar
Mehta N, Qiao R (2020) Medical management of COVID-19 clinic. J Biomed Res 34(6):416
Article
PubMed
PubMed Central
Google Scholar
Parang P, Singh B, Arora R (2005) Metabolic modulators for chronic cardiac ischemia. J Cardiovasc Pharmacol Ther 10(4):217–223
Article
CAS
PubMed
Google Scholar
Ruixing Y, Wenwu L, Al-Ghazali R (2007) Trimetazidine inhibits cardiomyocyte apoptosis in a rabbit model of ischemia-reperfusion. Transl Res 149(3):152–160
Article
PubMed
CAS
Google Scholar
Liu X, Gai Y, Liu F, Gao W, Zhang Y, Xu M, Li Z (2010) Trimetazidine inhibits pressure overload-induced cardiac fibrosis through NADPH oxidase–ROS–CTGF pathway. Cardiovasc Res 88(1):150–158
Article
CAS
PubMed
Google Scholar
Tanoglu A, Yamanel L, Inal V, Ocal R, Comert B, Bilgi C (2015) Appreciation of trimetazidine treatment in experimental sepsis rat model. Bratisl Lek Listy 116(2):124–127
CAS
PubMed
Google Scholar
Aldasoro M, Guerra-Ojeda S, Aguirre-Rueda D, Mauricio MD, Vila JM, Marchio P, Iradi A, Aldasoro C, Jorda A, Obrador E, Valles SL (2016) Effects of ranolazine on astrocytes and neurons in primary culture. PLoS ONE 11(3):e0150619
Article
PubMed
PubMed Central
CAS
Google Scholar
Antzelevitch C, Belardinelli L, Wu L, Fraser H, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, Cordeiro JM, Goodrow RJ, Scomik F (2004) Electrophysiologic properties and antiarrhythmic actions of a novel antianginal agent. J Cardiovasc Pharmacol Therap 9(1_suppl):S65–83
Murdock DK, Kaliebe J, Larrain G (2012) The use of ranolazine to facilitate electrical cardioversion in cardioversion-resistant patients: a case series. Pacing Clin Electrophysiol 35(3):302–307
Article
PubMed
Google Scholar
Miles RH, Passman R, Murdock DK (2011) Comparison of effectiveness and safety of ranolazine versus amiodarone for preventing atrial fibrillation after coronary artery bypass grafting. Am J Cardiol 108(5):673–676
Article
CAS
PubMed
Google Scholar
Reiffel JA, Camm AJ, Belardinelli L, Zeng D, Karwatowska-Prokopczuk E, Olmsted A, Zareba W, Rosero S, Kowey P (2015) The HARMONY trial: combined ranolazine and dronedarone in the management of paroxysmal atrial fibrillation: mechanistic and therapeutic synergism. Circul Arrhythmia Electrophysiol 8(5):1048–1056
Article
CAS
Google Scholar
Jerling M (2006) Clinical pharmacokinetics of ranolazine. Clin Pharmacokinet 45(5):469–491
Article
CAS
PubMed
Google Scholar
Maisch B, Alter P (2018) Treatment options in myocarditis and inflammatory cardiomyopathy. Herz 43(5):423–430
Article
CAS
PubMed
PubMed Central
Google Scholar
Rezkalla SH, Kloner RA (2020) Viral Myocarditis: 1917–2020: From the Influenza A to the COVID-19 Pandemics. Trends Cardiovasc Med 31:163
Article
PubMed
PubMed Central
CAS
Google Scholar
Barbieri A, Robinson N, Palma G, Maurea N, Desiderio V, Botti G (2020) Can Beta-2-adrenergic pathway be a new target to combat SARS-CoV-2 hyperinflammatory syndrome? Lessons learned from cancer. Front Immunol 30(11):2615
Google Scholar
Vogelstein JT, Powell M, Koenecke A, Xiong R, Fischer N, Huq S, Khalafallah AM, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Alpha-1 adrenergic receptor antagonists prevent acute respiratory distress syndrome and death: Implications for Coronavirus disease 2019.
Koenecke A, Powell M, Xiong R, Shen Z, Fischer N, Huq S, Khalafallah AM, Trevisan M, Sparen P, Carrero JJ, Nishimura A (2020) Alpha-1 adrenergic receptor antagonists to prevent hyperinflammation and death from lower respiratory tract infection. arXiv e-prints. arXiv-2004
Konig MF, Powell M, Staedtke V, Bai RY, Thomas DL, Fischer N, Huq S, Khalafallah AM, Koenecke A, Papadopoulos N, Kinzler KW (2020) Targeting the catecholamine-cytokine axis to prevent SARS-CoV-2 cytokine storm syndrome
Selçuk M, Çınar T, Keskin M, Çiçek V, Kılıç Ş, Kenan B et al (2020) Is the use of ACE inb/ARBs associated with higher in-hospital mortality in Covid-19 pneumonia patients? Clin Exp Hypertens 42(8):738–742. https://doi.org/10.1080/10641963.2020.1783549
Article
CAS
PubMed
Google Scholar
Flacco ME, Acuti Martellucci C, Bravi F, Parruti G, Cappadona R, Mascitelli A et al (2020) Treatment with ACE inhibitors or ARBs and risk of severe/lethal COVID-19: a meta-analysis. Heart 106(19):1519–1524
Article
CAS
PubMed
Google Scholar
De Mello WC (2002) Electrical activity of the heart and angiotensin-converting enzyme inhibitors on the hyperpolarising action of enalapril. J Hum Hypertens 16(1):S89-92
Article
PubMed
Google Scholar
Campbell RW (1996) ACE inhibitors and arrhythmias. Hear 76(3 Suppl 3):79–82
Article
CAS
Google Scholar
Makkar KM, Sanoski CA, Spinler SA (2009) Role of angiotensin-converting enzyme inhibitors, Angiotensin II receptor blockers, and aldosterone antagonists in the prevention of atrial and ventricular arrhythmias. Pharmacother J Hum Pharmacol Drug Ther 29(1):31–48. https://doi.org/10.1592/phco.29.1.31
Article
CAS
Google Scholar
Duran M, Alsancak Y, Ziyrek M (2021) Effects of oral colchicine administration as first-line adjunct therapy in myopericarditis. Herz 10:1–9
Google Scholar
Malan D, Gallo MP, Bedendi I, Biasin C, Levi RC, Alloatti G (2003) Microtubules mobility affects the modulation of L-type ICa by muscarinic and β-adrenergic agonists in guinea-pig cardiac myocytes. J Mol Cell Cardiol 35(2):195–206
Article
CAS
PubMed
Google Scholar