In cardiac catheterization, TRA is now considered the standard of care. Because of the low frequency of problems and the comfort provided to both the patient and the operator, (d-TRA) has gained significant interest in the field of interventional cardiology.
Because of the growing interest in this unique vascular access, numerous studies addressing the technique have been published; nevertheless, a complete and up-to-date comparison of conventional (TRA) and d-TRA is scarce [15].
Starting with the most statistically significant results in our study, access time in group I (d-TRA) varied from 3.0 to 9.0 min with a mean S.D. of 5.10 ± 1.61, whereas access time in group II (TRA) ranged from 1.0 to 5.0 min with a mean S.D. of 2.28 ± 1.16. P0.001 indicated that there were statistically significant differences between the two groups. Total procedural time varied from 18.0 to 30.0 min in group I, with a mean S.D. of 24.0 ± 2.91, and 12.0–30.0 min in group II, with a mean S.D. of 22.28 ± 3.83. P = 0.013 indicated that there were statistically significant differences between the groups. It's interesting to know that in d-TRA, both access time and total process time were strongly connected to the learning curve's progression. In all cases of both arms, a 6 Fr sheath was utilized.
The findings of studies comparing cannulation times were controversial. According to Kis and Soydan [16], the access time in the d-TRA group was greater than in the TRA group (46.85 ± 2.41 s against 36.66 ± 5.16 s, p = 0.008); these findings were consistent with those of Koutouzis et al., [17] (269 ± 251 s vs. 140 ± 161 s, p = 0.001). The time of cannulation was equivalent in the two techniques in the research by Hammami et al. [18], and the TRA strategy was comparable to the Turkish population [16]. Accessing the distal radial artery in the AS is more difficult than traditional TRA, and there is a learning curve to overcome. Lee et al. [19] looked at the learning curve for distal TRA and discovered that after around 150 instances, the puncture time had stabilized. Distal TRA takes substantially longer than typical TRA, according to research by Aoi et al. [20]. According to Aoi et al. [20], distal TRA took considerably longer to reach than traditional TRA (7.3 ± 5.7 vs. 5.2 ± 4.0, p 0.001). In the AS, the average number of attempts for distal TRA was 1.8, with ultrasonography being employed in 34.2% of patients. For traditional TRA, there was no data on attempts and ultrasonic usage.
According to our findings, Wang et al. [21], the mean puncture time for d-TRA was 5.4 ± 1.6 min and 5.6 ± 1.4 min for TRA, and the mean operational time for d-TRA and TRA was 50.0 ± 8.3 min and 51.0 ± 7.9 min, respectively. They also discovered that there were no significant differences in puncture success rate, puncture time, or operation duration between the two groups (P > 0.05).
According to the findings, d-TRA (group I) had 43 (86.0%) males and 7 (14.0%) females, whereas group II had 40 (80.0%) males and 10 (20.0%) females. P = 0.424 indicated that there were no statistically significant differences between groups. It is important to clarify that the low sample size of female sex in both groups wasn't intentional and success percentage was 100% in both groups. The age ranged from 45 to 69 years old in group I, with a mean S.D. of 56.34 ± 6.08 years, and 49–69 years old in group II, with a mean S.D. of 57.56 ± 5.49 years. There were no statistically significant differences between groups in terms of age and sex (P = 0.295) or success rate between males and females.
According to our findings, Rigatelli et al. [22] showed a systematic appraisal that comprised 8 eligible papers and 7693 patients (mean age 57.9 years for dTRA and 58.4 years for cTRA, respectively).
Wang et al. [21] also found that among the 160 males and 152 females in the distal radial artery puncture group, the average age was 50.17.2 years. There were 157 males and 151 females in the radial artery puncture group, with an average age of 51.27.3 years. Case number, gender, and age did not differ significantly.
In our hands, group I had 35 (70.0%) right hands and 15 (30.0%) left hands, whereas group II had 45 (90.0%) right hands and 5 (10.0%) left hands in the study. P = 0.012 indicated that there were statistically significant differences between groups, the selection of the side (whether right or left) of the procedure in both groups was randomized at the start of the study, but while proceeding we noticed that the left distal radial approach was more comfortable to the patient and the operator simultaneously than performing via the right side, while in group II we didn’t notice much comfort from the left side explaining the low left side radial intervention. Group I had 1–6 punctures with a mean S.D. of 2.56 ± 1.42, whereas group II had 1–5 punctures with a mean S.D. of 1.66 ± 0.89. (P 0.001) indicated that there were statistically significant differences between groups.
The puncture was effective in two patients from the d-TRA group, but the wire could not be pushed towards the forearm section of the radial artery; whereas the puncture failed in the rest, according to Hammami et al. [18]. For both groups, the right radial artery was the most often utilized first-intention arterial access. The left hand was approached by one patient (1%) in the TRA group and 31 patients (38%) in the d-TRA group (p 0.001).
Furthermore, according to Kis and Soydan [16], the left main radial artery was utilized in 12.2% (5 patients), whereas the left distal and right major radial arteries were used in 41.5% (17 patients) and 46.3% (19 patients), respectively.
Wang et al. [21] found no significant differences in puncture success rate, average puncture time, surgical time, implanted stent, or artery diameter of patients in these two groups (P > 0.05).
Vasodilator usage, Crossover to another access site, and post-operative puncture pain all exhibited highly statistically significant differences across groups, but radial artery blockage, hematoma, and A-V Fistula did not.
According to our findings, Wang et al. [21] found that there were no statistically significant difference (P > 0.05) between the comparisons for intraoperative radial artery spasm, postoperative hematoma, arterial aneurysm, and A-V fistula.
Also, according to Aoi et al. [20], post-procedural mild bleeding requiring TR band reinflation was greater in the distal TRA group (10.1% vs. 1.6%, p 0.001); however, hematoma was uncommon and not statistically significant (3.5% vs. 2.6%, p = 0.771).
No significant problems were reported in the research by Hammami et al. [18]. While significant problems occurred in 2.4% of d-TRA operations in Coomes et al. [14], the most common of which was bleeding/hematoma (18.2%). There have been a few reports of dissection and arterio-venous fistula. There were no significant differences in total problems in cohorts comparing d-TRA to TRA by Kaledin et al. [23].
Our findings revealed that in group I, 23 (46.0%) used two catheters and 27 (54.0%) used three, but in group II, 27 (54.0%) used two catheters and 23 (46.0%) used three. P = 0.424 indicated that there were no statistically significant differences between groups. Contrast volume was measured between 80.0 and 300.0 in group I, with a mean S.D. of 189.4 ± 51.25, and between 80.0 and 280.0 in group II, with a mean S.D. of 190.0 ± 49.16. When P = 952 was used, there were no statistically significant differences between the groups.
In contrast to our findings, Hammami et al. [18] found that successful catheterization was performed in 98% of TRA patients and 88% of d-TRA patients (p = 0.008). Despite similar doses of administered heparin between distal TRA and conventional TRA, Aoi et al. [22] found that the TR band was removed faster for d-TRA than for conventional TRA for both diagnostic catheterization (91.6 ± 31.0 vs. 126.3 ± 28.0, p 0.001) and PCI (120.8 ± 45.2 vs. 245.5 ± 39.5, p 0.001), with (pint 0.001). Furthermore, when compared to traditional TRA that had diagnostic catheterization, d-TRA that underwent PCI had a similar time to remove the TR band.
Finally, post-operative radial artery pulse was found in 45 (90.0%) of patients in group I and 44 (88.0%) of patients in group II. P = 0.749 indicated that there were no statistically significant differences between groups.
The post-procedural compression time in group I was 2.0–7.0 with a mean S.D. of 5.14 ± 0.88, whereas the post-procedural compression time in group II was 19.0–40.0 with a mean S.D. of 24.50 ± 4.02 P 0.001 indicated that there were statistically significant differences between groups. We need to clear out that manual compression post-procedure was used in group I patients, while radial band was used in group II patients denoting the major advantage of the d-TRA approach in post-procedural hemostasis.
Comparing our study results with the meta-analysis study done by Cao et al., which was published in November 2021, we both agree that there is no significant difference between d-TRA and TRA regarding post-operative hematoma (RR: 0.880, 95% CI 0.511–1.518, p = 0.646, I2 = 51.1%), and that there is a more incidence of RAO with TRA than d-TRA (RR: 0.203, 95% CI 0.106–0.391, p < 0.001, I2 = 27.1%), but we don’t share the same agreement related the access success rate as they reported that there is no much difference between both groups (RR: 0.965, 95% confidence interval (CI) 0.924–1.007, p = 0.1, I2 = 81.4%), which made us highlighting the value of operator experience and good selection of cases and their relation with the access success rate using d-TRA [24].
And on the other hand, comparing our work results with randomized clinical trial done by Lucreziotti S, et al., published in March 2021, we both agree on the concept of reduced access success rate with d-TRA group compared with the conventional TRA group. Vascular access failure was more frequent in d-TRA patients than in conventional TRA patients (34% versus 8.7%, P < 0.0001). But on contrary they didn’t report any case with RAO on both groups as we found 7 cases with conventional TRA arm. [25]