De la Fuente M (2021) The role of the microbiota-gut-brain axis in the health and illness condition: a focus on Alzheimer’s disease. J Alzheimers Dis 81(4):1345–1360
Article
Google Scholar
Gawałko M, Agbaedeng TA, Saljic A, Müller DN, Wilck N, Schnabel R, Penders J, Rienstra M, van Gelder I, Jespersen T, Schotten U (2022) Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc Res 118(11):2415–2427
Article
Google Scholar
Rajilić-Stojanović M, De Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38(5):996–1047
Article
Google Scholar
Roth S, Franken P, Sacchetti A, Kremer A, Anderson K, Sansom O, Fodde R (2012) Paneth cells in intestinal homeostasis and tissue injury. PLoS ONE 7(6):e38965
Article
CAS
Google Scholar
In JG, Foulke-Abel J, Estes MK, Zachos NC, Kovbasnjuk O, Donowitz M (2016) Human mini-guts: new insights into intestinal physiology and host–pathogen interactions. Nat Rev Gastroenterol Hepatol 13(11):633–642
Article
CAS
Google Scholar
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Adv Immunol 1(121):91–119
Article
Google Scholar
Kendrick SF, O’Boyle G, Mann J, Zeybel M, Palmer J, Jones DE, Day CP (2010) Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology 51(6):1988–1997
Article
CAS
Google Scholar
Fontenelle B, Gilbert KM (2012) n-Butyrate anergized effector CD4+ T cells independent of regulatory T cell generation or activity. Scand J Immunol 76(5):457–463
Article
CAS
Google Scholar
Yiu JH, Dorweiler B, Woo CW (2017) Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. J Mol Med 95(1):13–20
Article
CAS
Google Scholar
Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26(1):26191
Google Scholar
Shi LH, Balakrishnan K, Thiagarajah K, Ismail NI, Yin OS (2016) Beneficial properties of probiotics. Trop Life Sci Res 27(2):73
Article
Google Scholar
Okazaki R, Iwasaki YK, Miyauchi Y, Hirayama Y, Kobayashi Y, Katoh T, Mizuno K, Sekiguchi A, Yamashita T (2009) lipopolysaccharide induces atrial arrhythmogenesis via down-regulation of L-type Ca2þ channel genes in rats. Int Heart J 50:353–363
Article
CAS
Google Scholar
Jaw JE, Tsuruta M, Oh Y, Schipilow J, Hirano Y, Ngan DA, Suda K, Li Y, Oh JY, Moritani K, Tam S (2016) Lung exposure to lipopolysaccharide causes atherosclerotic plaque destabilisation. Eur Respir J 48(1):205–215
Article
CAS
Google Scholar
Svingen GF, Zuo H, Ueland PM, Seifert R, Løland KH, Pedersen ER, Schuster PM, Karlsson T, Tell GS, Schartum-Hansen H, Olset H (2018) Increased plasma trimethylamine-N-oxide is associated with incident atrial fibrillation. Int J Cardiol 15(267):100–106
Article
Google Scholar
Gong D, Zhang L, Zhang Y, Wang F, Zhao Z, Zhou X (2019) Gut microbial metabolite trimethylamine N-oxide is related to thrombus formation in atrial fibrillation patients. Am J Med Sci 358(6):422–428
Article
Google Scholar
Ufnal M, Jazwiec R, Dadlez M, Drapala A, Sikora M, Skrzypecki J (2014) Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. Can J Cardiol 30(12):1700–1705
Article
Google Scholar
Brunt VE, Casso AG, Gioscia-Ryan RA, Sapinsley ZJ, Ziemba BP, Clayton ZS, Bazzoni AE, VanDongen NS, Richey JJ, Hutton DA, Zigler MC (2021) Gut microbiome-derived metabolite trimethylamine N-oxide induces aortic stiffening and increases systolic blood pressure with aging in mice and humans. Hypertension 78(2):499–511
Article
CAS
Google Scholar
Navarro-Polanco RA, Aréchiga-Figueroa IA, Salazar-Fajardo PD, Benavides-Haro DE, Rodríguez-Elías JC, Sachse FB, Tristani-Firouzi M, Sánchez-Chapula JA, Moreno-Galindo EG (2013) Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K+ current by choline in feline atrial myocytes. J Physiol 591(17):4273–4286
Article
CAS
Google Scholar
Wt C, Yc C, Hsieh Mh, Sy H, Kao Yh, Ya C, Yk L, Sa C, Yj C (2015) The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis. J Cardiovasc Electrophysiol 26(2):203–210
Article
Google Scholar
Yamagami F, Tajiri K, Doki K, Hattori M, Honda J, Aita S, Harunari T, Yamasaki H, Murakoshi N, Sekiguchi Y, Homma M (2018) Indoxyl sulphate is associated with atrial fibrillation recurrence after catheter ablation. Sci Rep 8(1):1–8
Article
CAS
Google Scholar
Koike H, Morita T, Tatebe J, Watanabe I, Koike M, Yao S, Shinohara M, Yuzawa H, Suzuki T, Fujino T, Ikeda T (2019) The relationship between serum indoxyl sulfate and the renal function after catheter ablation of atrial fibrillation in patients with mild renal dysfunction. Heart Vessels 34(4):641–649
Article
Google Scholar
Döring, B., & Petzinger, E. (2014). Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug metabolism reviews, 46(3), 261-282.
Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105(6):2253–2278
Article
CAS
Google Scholar
Lynch T, Neff AP (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Phys 76(3):391–396
Google Scholar
El Aidy S, Van Den Bogert B, Kleerebezem M (2015) The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol 1(32):14–20
Article
Google Scholar
Swanson HI (2015) Drug metabolism by the host and gut microbiota: a partnership or rivalry? Drug Metab Dispos 43(10):1499–1504
Article
CAS
Google Scholar
Enright EF, Gahan CG, Joyce SA, Griffin BT (2016) Focus: microbiome: the impact of the gut microbiota on drug metabolism and clinical outcome. Yale J Biol Med 89(3):375
CAS
Google Scholar
Stavropoulou E, Pircalabioru GG, Bezirtzoglou E (2018) The role of cytochromes P450 in infection. Front Immunol 31(9):89
Article
Google Scholar
Noh K, Kang YR, Nepal MR, Shakya R, Kang MJ, Kang W, Lee S, Jeong HG, Jeong TC (2017) Impact of gut microbiota on drug metabolism: an update for safe and effective use of drugs. Arch Pharmacal Res 40(12):1345–1355
Article
CAS
Google Scholar
Mikov M, Lee HJ, Fawcett JP (2006) The influence of probiotic treatment on sulfasalazine metabolism in rat gut contents. Asian J Pharmacokinet Pharmacodynam 6:337–342
Google Scholar
Gingell R, Bridges JW, Williams RT (1971) The role of the gut flora in the metabolism of prontosil and neoprontosil in the rat. Xenobiotica 1(2):143–156
Article
CAS
Google Scholar
Lee JR, Muthukumar T, Dadhania D, Taur Y, Jenq RR, Toussaint NC, Ling L, Pamer E, Suthanthiran M (2015) Gut microbiota and tacrolimus dosing in kidney transplantation. PLoS ONE 10(3):e0122399
Article
Google Scholar
Scott KP, Jean-Michel A, Midtvedt T, van Hemert S (2015) Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Health Dis 26(1):25877
Google Scholar
Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci 106(34):14728–14733
Article
CAS
Google Scholar
Hashim H, Azmin S, Razlan H, Yahya NW, Tan HJ, Manaf MR, Ibrahim NM (2014) Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS ONE 9(11):e112330
Article
Google Scholar
Tozaki H, Emi Y, Horisaka ER, Fujita T, Yamamoto A, Muranishi S (1997) Degradation of insulin and calcitonin and their protection by various protease inhibitors in rat caecal contents: implications in peptide delivery to the colon. J Pharm Pharmacol 49(2):164–168
Article
CAS
Google Scholar
Haiser HJ, Gootenberg DB, Chatman K et al (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium eggerthella lenta. Science 341(6143):295–298
Article
CAS
Google Scholar
Davey KJ, Cotter PD, O’sullivan O, Crispie F, Dinan TG, Cryan JF, O’Mahony S (2013) Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatr 3(10):e309
Article
CAS
Google Scholar
Rescigno M (2017) The microbiota revolution: excitement and caution. Eur J Immunol 47(9):1406–1413
Article
CAS
Google Scholar
Rendic S, Guengerich FP (2010) Update information on drug metabolism systems—2009, part II. Summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters. Curr Drug Metab 11(1):4–84
Article
CAS
Google Scholar
Sewer MB, Koop DR, Morgan ET (1997) Differential inductive and suppressive effects of endotoxin and particulate irritants on hepatic and renal cytochrome P-450 expression. J Pharmacol Exp Ther 280(3):1445–1454
CAS
Google Scholar
Sirich TL, Plummer NS, Gardner CD, Hostetter TH, Meyer TW (2014) Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 9(9):1603–1610
Article
CAS
Google Scholar
Wang F, Jiang H, Shi K, Ren YI, Zhang PA, Cheng S (2012) Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology 17(8):733–738
Article
CAS
Google Scholar
Meijers BK, Bammens B, Verbeke K, Evenepoel P (2008) A review of albumin binding in CKD. Am J Kidney Dis 51(5):839–850
Article
Google Scholar
Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S (2016) Effect of intestinal flora on protein expression of drug-metabolizing enzymes and transporters in the liver and kidney of germ-free and antibiotics-treated mice. Mol Pharm 13(8):2691–2701
Article
CAS
Google Scholar
Vaughan Williams EM (1989) Classification of antiarrhythmic actions. In: Antiarrhythmic drugs. Springer, Berlin, Heidelberg, pp 45–67
Roden DM, Darbar D, Kannankeril PJ (2007) Antiarrhythmic drugs. In: Cardiovascular medicine. Springer, London, pp 2085–2102
Aliot E, Lazzara R (eds) (2012) Ventricular Tachycardias: from mechanism to therapy. Springer Science & Business Media
Gillis AM, Kates RE (1984) Clinical pharmacokinetics of the newer antiarrhythmic agents. Clin Pharmacokinet 9(5):375–403
Article
CAS
Google Scholar
Siddoway LA, Roden DM, Woosley RL (1985) Clinical pharmacology of old and new antiarrhythmic drugs. Cardiovasc Clin 15(3):199–248
CAS
Google Scholar
Bottino R, Carbone A, D’Andrea A, Liccardo B, Cimmino G, Imbalzano E, Russo V (2022) Pharmacokinetic determinants for the right dose of antiarrhythmic drugs. Expert Opin Drug Metab Toxicol 4:1–2
Google Scholar
Kowey PR (1998) Pharmacological effects of antiarrhythmic drugs: Review and update. Arch Intern Med 158(4):325–332
Article
CAS
Google Scholar
Hasannejad H, Takeda M, Narikawa S, Huang XL, Enomoto A, Taki K, Niwa T, Jung SH, Onozato ML, Tojo A, Endou H (2004) Human organic cation transporter 3 mediates the transport of antiarrhythmic drugs. Eur J Pharmacol 499(1–2):45–51
Article
CAS
Google Scholar
Lessard E, Fortin A, Bélanger PM, Beaune P, Hamelin BA, Turgeon J (1997) Role of CYP2D6 in the N-hydroxylation of procainamide. Pharmacogenetics 7(5):381–390
Article
CAS
Google Scholar
König J, Müller F, Fromm MF (2013) Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev 65(3):944–966
Article
Google Scholar
Orlando R, Piccoli P, De Martin S, Padrini R, Floreani M, Palatini P (2004) Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther 75(1):80–88
Article
CAS
Google Scholar
Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenet Genomics 12(3):251–263
Article
CAS
Google Scholar
Jarvis B, Coukell AJ (1998) Mexiletine Drugs 56(4):691–707
Article
CAS
Google Scholar
Morrissey KM, Stocker SL, Wittwer MB, Xu L, Giacomini KM (2013) Renal transporters in drug development. Annu Rev Pharmacol Toxicol 53(1):503–529
Article
CAS
Google Scholar
Murray KT (2000) Using antiarrhythmic drugs: administration, pharmacokinetics, and compliance. Card Electrophysiol Rev 4(3–4):190
Article
Google Scholar
Tamargo J, Capucci A, Mabo P (2012) Safety of flecainide. Drug Saf 35(4):273–289
Article
CAS
Google Scholar
Afshar M, Thormann W (2006) Capillary electrophoretic investigation of the enantioselective metabolism of propafenone by human cytochrome P-450 SUPERSOMES: evidence for atypical kinetics by CYP2D6 and CYP3A4. Electrophoresis 27(8):1526–1536
Article
CAS
Google Scholar
Zisaki A, Miskovic L, Hatzimanikatis V (2015) Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches. Curr Pharm Des 21(6):806–822
Article
CAS
Google Scholar
Johnson JA, Burlew BS (1996) Metoprolol metabolism via cytochrome P4502D6 in ethnic populations. Drug Metab Dispos 24(3):350–355
CAS
Google Scholar
Castro A, Chieffi M, Santini M (1999) Cholesterol reduction, statins and the cytochrome P-450 system. No more recipes please. Heart 82:319–324
Google Scholar
Hassan OT, Hassan RT, Arora RR (2016) Organic cation transporter-mediated clearance of cardiovascular drugs: a pharmacological perspective. Am J Ther 23(3):e855–e861
Article
Google Scholar
Russo V, Rago A, Carbone A, Bottino R, Ammendola E, Della Cioppa N, Galante D, Golino P, Nigro G (2020) Atrial fibrillation in COVID-19: from epidemiological association to pharmacological implications. J Cardiovasc Pharmacol 76(2):138–145
Article
CAS
Google Scholar
Ibrahim MA, Kerndt CC, Tivakaran VS (2021) Dofetilide. InStatPearls [Internet]. StatPearls Publishing
Wilbur SL, Marchlinski FE (1997) Adenosine as an antiarrhythmic agent. Am J Cardiol 79(12):30–37
Article
CAS
Google Scholar
Celikyurt I, Meier CR, Kühne M, Schaer B (2017) Safety and interactions of direct oral anticoagulants with antiarrhythmic drugs. Drug Saf 40(11):1091–1098
Article
CAS
Google Scholar
Kaminsky LS, Zhang ZY (1997) Human P450 metabolism of warfarin. Pharmacol Ther 73(1):67–74
Article
CAS
Google Scholar
Ghahramani P, Rowland-Yeo K, Yeo WW, Jackson PR, Ramsay LE (1998) Protein binding of aspirin and salicylate measured by in vivo ultrafiltration. Clin Pharmacol Ther 63(3):285–295
Article
CAS
Google Scholar
Sekine T, Cha SH, Endou H (2000) The multispecific organic anion transporter (OAT) family. Pflugers Arch 440(3):337–350
Article
CAS
Google Scholar
Palikhe NS, Kim SH, Nam YH, Ye YM, Park HS (2011) Polymorphisms of aspirin-metabolizing enzymes CYP2C9, NAT2 and UGT1A6 in aspirin-intolerant urticaria. Allergy, Asthma Immunol Res 3(4):273–276
Article
Google Scholar
Blech S, Ebner T, Ludwig-Schwellinger E, Stangier J, Roth W (2008) The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab Dispos 36(2):386–399
Article
CAS
Google Scholar
Ogata K, Mendell-Harary J, Tachibana M, Masumoto H, Oguma T, Kojima M, Kunitada S (2010) Clinical safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel factor Xa inhibitor edoxaban in healthy volunteers. J Clin Pharmacol 50(7):743–753
Article
CAS
Google Scholar
Mueck W, Stampfuss J, Kubitza D, Becka M (2014) Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet 53(1):1–6
Article
CAS
Google Scholar
Byon W, Garonzik S, Boyd RA, Frost CE (2019) Apixaban: a clinical pharmacokinetic and pharmacodynamic review. Clin Pharmacokinet 58(10):1265–1279
Article
Google Scholar
Poesen R, Claes K, Evenepoel P, de Loor H, Augustijns P, Kuypers D, Meijers B (2016) Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol 27(11):3479–3487
Article
CAS
Google Scholar
Meffin PJ, Robert EW, Winkle RA, Harapat S, Peters FA, Harrison DC (1979) Role of concentration-dependent plasma protein binding in disopyramide disposition. J Pharmacokinet Biopharm 7(1):29–46
Article
CAS
Google Scholar
Choi MS, Yu JS, Yoo HH, Kim DH (2018) The role of gut microbiota in the pharmacokinetics of antihypertensive drugs. Pharmacol Res 1(130):164–171
Article
Google Scholar
Matuskova Z, Anzenbacherova E, Vecera R, Tlaskalova-Hogenova H, Kolar M, Anzenbacher P (2014) Administration of a probiotic can change drug pharmacokinetics: effect of E. coli Nissle 1917 on amidarone absorption in rats. PLoS ONE 9(2):e87150
Article
Google Scholar
Mori K, Morisaki H, Yajima S, Suzuki T, Ishikawa A, Nakamura N, Innami Y, Takeda J (2011) Beta-1 blocker improves survival of septic rats through preservation of gut barrier function. Intens Care Med 37(11):1849–1856
Article
CAS
Google Scholar
Pogwizd SM, Bers DM (2004) Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 14(2):61–66
Article
CAS
Google Scholar
Kim IS, Yoo DH, Jung IH, Lim S, Jeong JJ, Kim KA, Bae ON, Yoo HH, Kim DH (2016) Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin. Biochem Pharmacol 15(122):72–79
Article
Google Scholar
Cooke G, Behan J, Costello M (2006) Newly identified vitamin K-producing bacteria isolated from the neonatal faecal flora. Microb Ecol Health Dis 18(3–4):133–138
CAS
Google Scholar
Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-β1 in cardiomyopathy, valvular disease and arrhythmia. Immunology 118(1):10–24
Article
CAS
Google Scholar
Rajdev A, Garan H, Biviano A (2012) Arrhythmias in pulmonary arterial hypertension. Prog Cardiovasc Dis 55(2):180–186
Article
Google Scholar