Skip to main content

Infectious factors in myocarditis: a comprehensive review of common and rare pathogens

Abstract

Background

Myocarditis is a significant health threat today, with infectious agents being the most common cause. Accurate diagnosis of the etiology of infectious myocarditis is crucial for effective treatment.

Main body

Infectious myocarditis can be caused by viruses, prokaryotes, parasites, and fungi. Viral infections are typically the primary cause. However, some rare opportunistic pathogens can also damage heart muscle cells in patients with immunodeficiencies, neoplasms and those who have undergone heart surgery.

Conclusions

This article reviews research on common and rare pathogens of infectious myocarditis, emphasizing the complexity of its etiology, with the aim of helping clinicians make an accurate diagnosis of infectious myocarditis.

Background

Myocarditis is an inflammatory heart disease with a diverse spectrum of clinical manifestations, from virtually asymptomatic to syncope, tachycardia, heart failure, cardiogenic shock, and even mortality [1]. Worldwide, myocarditis annually affects approximately ~ 22 in 100,000 individuals [2, 3]. Furthermore, the identification rate of it in conventional autopsies amounted to 9% [4]. Among cases of abrupt death in children, 16–21% were due to myocarditis [5]. The condition can precipitate fatal outcomes in up to 7% of young athletes [6, 7]. Myocarditis can be caused by a multitude of infectious agents (Fig. 1), such as viruses, prokaryotes, parasites, and fungi, as well as by noninfectious triggers including drugs, toxins, and hypersensitivity reactions [8]. Among these drivers, viral infection has been proved to be the most prevalent contributor to myocarditis [9, 10].

Fig. 1
figure 1

Pathogens of infectious myocarditis. Myocardial cell damage is caused by viruses, prokaryotes, parasites, and fungi, which are often accompanied by inflammatory cell infiltration

Endomyocardial biopsy (EMB) and cardiac magnetic resonance imaging (CMRI) are usually performed to diagnose myocarditis [11]. The gold standard for the diagnosis of myocarditis remains the EMB. This procedure allows the designation of “proven” myocarditis. Conversely, CMRI provides the possibility of considering “confirmed” myocarditis, offering invaluable diagnostic information in the process [12]. EMB can disclose histological and immunological signatures of myocarditis. Mononuclear cells, giant multinucleated cells, eosinophils, and other cellular infiltrates can be observable in myocarditis lesions, with myocyte loss [13]. Acute myocarditis can be lethal in short periods of time, while prolonged chronic myocarditis is always expected to result in dilated cardiomyopathy (DCM) [10, 14]. It has been estimated that between 9% and 16% of patients with myocarditis will subsequently develop DCM [8, 15, 16]. DCM is described as a severe cardiomyopathy characterized by cardiac enlargement, dilated ventricular chambers and systolic dysfunction [17]. In the absence of efficient treatment, DCM is considered an end-stage disease and sufferers often require heart transplantation.

Until the causes are identified, clinical treatments for myocarditis are usually supportive. Nevertheless, routine supportive therapy alone may not lead to favorable prognosis without effective targeting of the causes. In view of the pervasiveness of infectious myocarditis, this paper reviews the published research on commonly encountered pathogens of infectious myocarditis and also collected some evidence of atypical pathogens attacking cardiac tissue.

Viral myocarditis

Generally, it is recognized that the pathological process of viral myocarditis can be divided into three phases: an acute phase caused by viral invasion and replication, a subacute phase characterized by inflammatory cell infiltration, and a chronic phase defined by cardiac remodeling [18]. During the acute phase, innate immune cells such as dendritic cells, natural killer cells and macrophages migrate to the heart and limit viral replication until adaptive immune response occurs. If the pathological process is not effectively addressed, it proceeds to chronic phase in which persistent low level of inflammatory response exists.

The pathogenesis of viral myocarditis includes direct injury by viral infection and consequent damage secondary to the host’s immune response [19]. Viruses commonly invade cardiomyocytes through specific receptors and co-receptors to utilize substances from the reservoir cell for their own biosynthesis and replication, which leads to metabolic disruption and even death of the host cell. Initial activation of the immune response benefits the anti-infective response by arresting viral replication. Yet, continuous and excessive immune response facilitates the development of myocarditis and promotion of DCM. Additionally, following viral infection, cardiac antigens that cross-react with viral antigens are exposed to the immune system, eliciting autoimmune responses. Autoantibody and autoreactive immune cells can result in impairment of cardiomyocytes [20].

Enteroviruses

Nearly a quarter of viral myocarditis is attributed to enteroviruses [21]. Despite the fact that enteroviruses predominantly harbor in the gastrointestinal tract, the main diseases induced by them often exhibit symptoms outside of this area. Enterovirus genes encode multiple proteases that perform the entire viral life cycle as they process viral polyprotein into several structural and nonstructural proteins. These viral proteases also facilitate the development of disease by engaging in targeted cleavage of host cell proteins [22, 23].

Coxsackieviruses

Coxsackieviruses are the most common enteric virus responsible for myocarditis. The virus enters different cell types through the coxsackievirus-adenovirus receptor (CAR), a member of the family of adhesion molecules located at cell–cell junctions. Among them, Coxsackievirus B3 (CVB3) is the prevalent serotype for viral myocarditis, which binds to and aggregates decay-accelerating factor on the apical surface of cardiomyocytes, subsequently being brought to CAR at the intercalated discs and then internalized [24]. Once inside the cytoplasm, its genetic material, positive-stranded RNA, is translated into structural and nonstructural proteins. Positive-stranded RNA is transmitted through RNA-dependent RNA polymerase to produce negative-stranded RNA intermediates, which in turn generate positive-stranded RNA for packaging with structural proteins to form zygotic virus particles [25]. The zygotic virus particles are released to infect adjacent cells and thus enter the next life cycle. Acute infection of CVB3 induces intense myocarditis, while chronic infection fosters DCM. In rare instances, myocarditis caused by CVB3 can develop into DCM of an acute onset [26].

There are multiple mechanisms by which CVB3 can lead to cardiomyocyte injury or death. The nonstructural protein 2A protease of CVB3 destructs eukaryotic initiation factor 4G (eIF4G) and polyadenylate-binding proteins (PABP), preventing protein synthesis, interfering with host cell metabolism, and inducing cardiomyocyte apoptosis [27,28,29,30]. The 3C protease not only cleaves viral polyproteins but also disrupts host cell signaling proteins such as mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1 receptor domain-inducing interferon-beta (TRIF), which inhibits interferon production and apoptotic signaling [31, 32].

The interaction between CVB3 and miRNAs also plays a critical role in viral pathogenesis. MiRNAs are a newly discovered class of noncoding RNAs that exert gene regulation by binding to the 3′-untranslated region (UTR) of messenger RNAs [33]. Certain miRNAs affect viral replication by directly regulating viral gene expression or host response to viral invasion [34]. During CVB3 infection, miR-141 targets the cap-binding protein eukaryotic initiation factor 4E (eIF4E) to block the translation of host proteins [35]. MiR-10a can bind to the nucleic acid sequence of CVB3 and significantly enhance viral biosynthesis [36]. Zinc finger protein-148 suppresses CVB3 replication by combining with miR-20b [37]. MiR-203 activates the protein kinase C/transcription factor AP-1 pathway to promote CVB3 survival in the early stages of infection [38]. Similarly, miR-126 facilitates viral multiplication through the extracellular regulated protein kinases 1/2 (ERK1/2) positive feedback loop and induction of glycogen synthase kinase-3β (GSK-3β) [39]. Ongoing investigations are exploring the interactions between CVB3 and several other host miRNAs [40].

A variety of other mechanisms are used by CVB3 to promote self-replication and damage cardiomyocytes. Autophagosomes fuse with lysosomes to assist Toll-like receptor 3 (TLR3) in recognizing viral material and presenting viral proteins with antigenic information via the endogenous antigen presentation pathway [41, 42]. Nevertheless, CVB3 leads to an increase in the number of autophagosomes in the host cell and prohibits their fusion with lysosomes, promoting self-survival [43, 44]. Additionally, it promotes the ubiquitin–proteasome system (UPS) of the host cell to boost replication [23, 45]. As CVB3 also activates inflammasomes, which in turn contribute to the production of inflammatory cytokines through the IL-1 signaling pathway, leading to myocardial impairment [46, 47].

Human parechovirus

Human parechovirus (HPEV) belongs to a subgenus of echoviruses and is originally isolated from the feces of patients with diarrhea [48]. It predominantly affects children under 1 year and is uncommon in older adolescents and adults [49]. The majority of pathogenicity studies of HPEV infections are related to HPEV-1 and HPEV-3 [50]. Besides causing slight digestive and respiratory symptoms, HPEV can also induce gross viral meningitis [51, 52]. Conventional enterovirus PCR cannot detect HPEV RNA, requiring additional HPEV testing [53]. Studies have shown that HPEV may induce myocarditis in children and adolescents [54,55,56]. In recent years, there have also been published papers reporting evidence of HPEV contributing to myocarditis in adults [53].

Reovirus

Reovirus is an envelope-less, double-stranded RNA virus that attacks central nervous tissue, liver and cardiac structures. In neonatal mice, infection through the gastrointestinal tract can result in disseminated infection and damage to the nervous, hepatic, and cardiac systems [57]. Reovirus directly inflicted significant cytopathic effects on primary cardiomyocytes of neonatal mice, ultimately leading to cell death [58, 59]. There is also evidence that reovirus is an inducer of acute myocarditis in humans [60].

Respiratory viruses

Respiratory viruses enter the body through the respiratory tract, proliferate in the mucosal epithelium, and cause localized infection of the respiratory tract or tissue damage outside the respiratory tract. The main source of infection is patients who are infected or carrying viruses. Some respiratory viruses can be transmitted to humans from animals infected with or bearing them.

Novel coronavirus

The novel pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, is similar to severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV), with the most predominant clinical manifestation being lung damage [61]. With the rapid development of relevant research, it has been found that 20–30% of patients in hospitals with symptoms of cardiovascular impairment are associated with poor clinical outcomes [62]. Clinical evidence indicates that SARS-CoV-2 can result in acute myocarditis, which can be confirmed by CMRI [63].

Angiotensin-converting enzyme 2 (ACE2) on the cell surface is the receptor for the binding of SARS-CoV-2 spike protein. ACE2 is expressed in a wide range of cells, including cardiomyocytes, fibroblasts, and endothelial cells [64]. The presence of the gene for SARS-CoV-2 was detected by PCR in cardiac tissue from autopsies of patients with COVID-19, and pathological changes of cardiomyocyte necrosis and monocyte infiltration were observed [65, 66]. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and engineered myocardial tissues could be directly infected with SARS-CoV-2 [67]. In addition, the investigators reported cases of fulminant myocarditis caused by SARS-CoV-2 [68, 69]. The evidence suggests that SARS-CoV-2 may directly infect and impair myocardial tissue, which in turn induces myocarditis.

Adenoviruses

Adenoviruses (Adv) induce upper respiratory tract infections and pneumonia, which have also been shown to be associated with myocarditis [17, 70, 71]. In samples from patients with myocarditis, the positive rate of detection of Adv using PCR was 23% [70]. In samples obtained from DCM patients, 12% were detected [70]. Animal experiments have indicated that Adv can replicate in cardiac tissue, causing CD3+ T-cell-dominated inflammatory cell infiltration and excessive IFN-γ response [5]. Furthermore, persistent Adv infection is associated with progressive impairment of cardiac function and cardiac remodeling [5, 17].

Influenza viruses

Influenza A viruses usually result in acute respiratory infections, which can also lead to congestive heart failure and myocarditis [72, 73]. One study noted that 4.9% of patients who were hospitalized during the influenza pandemic developed cardiac complications [74]. In patients with atherosclerosis, the acute coronary syndrome could be induced by influenza A virus [75]. Mouse cardiomyocytes and hiPSC-CMs could be infected with it, resulting in damage to the cardiomyocytes. In addition, it can replicate in Purkinje cells, causing abnormal electrophysiologic activity [76].

Respiratory syncytial virus

Respiratory syncytial virus (RSV) is a prevalent etiology of lower respiratory tract infections in infants and young children, as well as upper respiratory tract infections in older adolescents and adults. The pathology of RSV is characterized by the induction of eosinophilic inclusion body containing multinucleated giant cells. Although extrapulmonary symptoms caused by RSV are rare, it has been demonstrated that acute myocarditis can occur [77, 78].

Measles virus

The measles virus causes an acute respiratory infection characterized by high fever, cough and rash. However, it can also lead to serious complications such as pneumonia and myocarditis [79,80,81]. The advent of the measles vaccine has been instrumental in reducing the incidence of measles epidemics. Notwithstanding, there continue to be periodic outbreaks of measles, which constitute a significant threat to child health in developing countries [82]. The study conducted in China indicates that up to 42.7% of individuals infected with measles present with symptoms of myocarditis. Furthermore, children under the age of 12 are more likely to develop this complication [83]. Given the recurrence of measles globally, particularly in regions where vaccination rates have declined, it is imperative to monitor this disease.

Herpesviruses

Human herpesvirus

Human herpesvirus (HHV) is a lymphocytophilic virus that infects both endothelial and cardiomyocytes. Its nucleic acid can be incorporated into human chromosomes and transmitted vertically to offspring [84]. HHV-6 and HHV-7 have been described to initiate myocarditis [85, 86]. HHV-6 is the ubiquitous herpesvirus associated with myocarditis and predominantly infects CD4+ T cells [87]. Acquisition of HHV-6 infection usually occurs in childhood and can continue to be carried for life. In immunocompromised individuals, HHV-6 can be reactivated, leading to encephalitis, interstitial pneumonia and myocarditis [88]. There are two different mutant strains of HHV-6, HHV-6A and HHV-6B. HHV-6A enters cells via CD46, whereas HHV-6B via CD134 [89]. In patients with HHV-6 myocarditis, the HHV-6B genome was detected in 95% of cases, with the remainder having the HHV-6A genome [87, 90]. In spite of this, the relationship between HHV and myocarditis has not yet been entirely understood.

Human cytomegalovirus

Human cytomegalovirus (HCMV) is rigorously host-specific as a beta-herpesvirus which is responsible for lifelong latent infections in 50–90% of the world’s population [91]. In individuals with immunocompetent populations, it is usually asymptomatic, but reactivation can occur frequently. A study found a 3% positivity rate for HCMV detection using PCR in samples from patients with myocarditis [70]. Although HCMV has been linked to infrequent instances of acute myocarditis in adults, it can still be a life-threatening condition [92].

Epstein–Barr virus

Epstein–Barr virus (EBV) infection typically presents no or mild clinical symptoms in most children. In adolescents and adults, it often results in self-limiting infectious mononucleosis [93]. There is a significant association between EBV and the development of nasopharyngeal cancer and non-Hodgkin’s lymphomas in children [94]. While the primary invasion of EBV is in B lymphocytes, other systems can also be affected [95]. Myocarditis, coronary artery aneurysm, and pulmonary hypertension are disorders that can occur when the cardiovascular system is attacked by EBV [96, 97]. Several studies have shown evidence of myocarditis related to EBV [96, 98,99,100,101,102,103].

Retrovirus

Histological evidence of co-morbid myocarditis has been observed in up to two-thirds of autopsies of untreated patients with acquired immunodeficiency syndrome (AIDS) [104]. It is known that human immunodeficiency virus (HIV) can impair cardiomyocytes, leading to localized release of cytokines and triggering infiltration of inflammatory cells [1]. AIDS patients are severely immunocompromised with significantly increased risk of comorbidities with other viral or opportunistic infections. The observation that viral particles of HIV were found in vacuoles within infected cardiomyocytes, and that nucleic acids were detected in myocardial tissue by in situ nucleic acid hybridization, suggest direct invasion of HIV into cardiomyocytes [105, 106].

Hepatitis viruses

Hepatitis C virus (HCV) is an RNA virus that primarily affects the liver. It can also contribute to interstitial lung disease, myocarditis, DCM, and other extrahepatic manifestations [107,108,109,110]. In some patients with myocarditis and DCM, the presence of the HCV gene was detectable by EMB [107, 111]. During acute infection, HCV damages cardiomyocytes, which can lead to myocarditis. Apoptosis of cardiomyocytes is induced when they are present at persistently low levels, resulting in cardiac malfunction and even progression to DCM [107].

Arboviruses

Zika virus (ZV) is an arbovirus which is transmitted primarily through mosquito bites, with the potential to inflict severe neurological damage, heart failure, and cardiac arrhythmias [112, 113]. Studies have demonstrated that prenatal exposure to ZV can result in congenital heart disease (CHD) in infants [114,115,116]. In the animal model of ZV intrauterine infection, high levels of ZV were detected in the brain and heart of mice, which presented neurological deficits [117]. Furthermore, ZV was also detected in the hearts of infected rhesus monkeys [118]. Such evidence hints that ZV can infect cardiomyocytes and induce cardiac dysfunction.

Other viruses

Parvovirus B19 (PB19) consists of DNA viruses that spreads through the airways, gastrointestinal tract, blood, and vertical transmission, mainly affecting erythrocyte precursor cells. Infection with PB19 usually occurs in childhood and manifests itself in the form of infectious erythema. Studies have indicated that the virus can persist for life in human tissues such as the liver, skin, and tonsils [119]. Even though PB19 has a high detection rate in patients with myocarditis, it can also be found in specimens from nonmyocarditis patients [120, 121]. The source of PB19 nucleic acid is debated. Some studies have considered endothelial cells of small myocardial arteries and veins to be specific target cells for PB19 [122, 123], while one study proposed that PB19 DNA originates from mesenchymal mononuclear inflammatory cells [121]. Further investigation is required to determine the clinical relevance of PB19 to myocarditis [4].

Prokaryotic myocarditis

Bacteria are not common causative agents in infectious myocarditis. Cases of bacterial myocarditis are usually identified at post-mortem [124]. Myocardial abscesses are typically observed in serious sepsis or bacteremia, often combined with abscess lesions in multiple organs. Bacteria may invade the myocardial tissue by directly diffusing from the endocardium or by disseminating and implanting into the myocardial tissue from purulent lesions in other tissues. Direct invasion of bacteria or secretion of toxins can cause damage to myocardial cells, which in turn can lead to inflammation of the heart, resulting in abnormal cardiac function [125]. Pathologically, bacterial myocarditis is characterized by the formation of multifocal microabscesses in the myocardial tissue, with the left ventricle most often involved [124].

Gram-positive bacteria

Staphylococcus aureus

Staphylococcus aureus is generally recognized as the predominant cause of bacterial myocarditis [126]. While S. aureus is not a common cause of endocarditis, myocarditis with it is often the result of infection in other tissues or in immunocompromised patients [127,128,129]. A study reported a patient with simple S. aureus myocarditis presenting with symptoms of myocardial infarction who died 48 h after admission. The autopsy indicated multiple septic lesions with S. aureus in it [130]. However, simple S. aureus myocarditis is a rare occurrence in clinical practice.

Streptococcus pneumoniae

Streptococcus pneumoniae is the principal pathogen responsible for community-acquired pneumonia [131]. Cardiac damage can occur in invasive S. pneumoniae disease, whereby S. pneumoniae that enters the blood binds to vascular endothelial cells, which in turn attack and compromise cardiomyocytes [132]. It forms tiny lesions in the heart adjacent to blood vessels, causing abnormalities in electrophysiology and contractile function [132, 133]. S. pneumoniae that gains entry into cardiomyocytes develops biofilms with resistance to antibiotics [134]. Besides, biofilm-forming S. pneumoniae can secrete more toxin pneumolysin to kill macrophages and prevent them from recruiting neutrophils to inhibit the host immune response [134]. Still, invasive S. pneumoniae-induced myocarditis is not a common disease [135].

Clostridium difficile

Clostridium difficile is a widely distributed strictly anaerobic bacterium that can form highly resistant spores. It can cause severe clinical symptoms in patients with intestinal dysbiosis. Myocarditis caused by C. difficile is pathologically characterized by inflammation dominated by a neutrophilic infiltrate [136,137,138]. Infection with C. difficile in myocardial tissue is extremely infrequent, but the clinical outcome in patients is usually fatal [125].

Listeria monocytogenes

Listeria monocytogenes is an intracellular parasitic pathogen capable of provoking severe disease in susceptible populations [139]. In humans, L. monocytogenes invades the body through the gastrointestinal tract and replicates within the epithelial cells of the small intestinal mucosa. It then travels through the portal system to penetrate the liver and can also spread through the mesenteric lymph nodes and into the blood system, leading to infection of other organs [140]. Studies have identified L. monocytogenes that can attack cardiac tissue, leading to endocarditis, pericarditis and myocarditis [141,142,143,144].

Gram-negative bacteria

Campylobacter jejuni

Enteritis induced by Campylobacter jejuni is the nearest frequent intestinal infection in developed countries with an annual incidence of 1‰ [145, 146]. In addition to intestinal symptoms, patients with C. jejuni infection may experience extraintestinal complications such as conjunctivitis, reactive arthritis, and Guillain-Barré syndrome [147]. Myocarditis is a rare but important consequence of C. jejuni, whose common symptom is chest pain secondary to diarrhea [148, 149]. Myocardial cell necrosis and inflammation with predominantly lymphocytic infiltration are the pathologic changes caused by C. jejuni [148]. Nonetheless, the mechanism of C. jejuni-induced cardiomyocyte injury requires further investigation.

Legionella pneumophila

Apart from lung involvement, Legionella pneumophila can be isolated and cultured in the heart, brain, and spleen in autopsy studies. Extrapulmonary airway damage from L. pneumophila is relatively scarce, with cardiac involvement being the most prevalent [150, 151]. Although myocarditis is an uncommon complex of L. pneumophila infection, the condition is usually critical [151]. Only a relatively small number of cases of myocarditis due to L. pneumophila infection have been reported in the literature [152, 153].

Brucella

Brucella can be spread to humans after direct or indirect contact with infected animals or their products, and it can affect all organs and systems [154]. The involvement of the cardiovascular system has been reported to be as high as 2% [155, 156]. Of these, endocarditis is more common, but myocarditis and pericarditis can also occur [157]. Brucella myocarditis is usually sensitive to antibiotics [156, 158, 159]. In Brucella-endemic areas, prompt consideration of diagnosing Brucella myocarditis and administering appropriate antibiotic therapy may prevent a poor prognosis [160].

Neisseria meningitidis

Neisseria meningitidis is the causative agent of meningococcal bacteremia, which can result in a mortality rate of 10–15% [161]. The most significant complications of meningococcal bacteremia are disseminated intravascular coagulation (DIC), adrenal hemorrhage, and arthritis [162]. Myocarditis is an infrequent complexity of it [163,164,165]. Nevertheless, in a series of autopsy studies of children who succumbed to N. meningitidis infection, the incidence of myocarditis ranged from 27% to 57% [166, 167].

Gonococcus

Disseminated gonococcal infections are relatively rare occurrences in Neisseria gonorrhoeae. Cardiac involvement by gonococci often carries poor prognostic implications. Prior to 1940s, gonococcal endocarditis accounted for 11–26% of all cases of bacterial endocarditis, with myocarditis being exceedingly infrequent [168, 169]. With the advent of antibiotic therapy, the incidence of cardiac complications due to gonococci declined significantly. While, as HIV infection aggravates, gonococcal-induced myocarditis may reappear [170].

Salmonella

Salmonella can cause a variety of diseases, including enteric fever, typhoid, and diarrhea [171]. It is an unusual agent in myocarditis [172]. Salmonella typhi and Salmonella paratyphi are the main pathogens in the reported cases of Salmonella myocarditis. In contrast, nontyphoidal Salmonella myocarditis occurs frequently in young Western men and has a dismal outcome [173,174,175].

Mycoplasma pneumoniae

Mycoplasma pneumoniae gives rise to primary atypical pneumonia, tracheobronchitis, pharyngitis, and asthma in humans. Extrapulmonary complexes arise at various times after the onset of infection, even in asymptomatic infections. Up to a quarter of M. pneumoniae infections can develop extrapulmonary symptoms [176]. Cardiac complications are believed to occur slightly more frequently in adults than in children [176, 177]. Cardiac involvement by M. pneumoniae can present with a spectrum of symptoms varying from asymptomatic to severe chest pain [178, 179]. There is, however, a good response of mycoplasma to macrolide antibiotics, and timely diagnosis and treatment have a good outcome.

Rickettsia

Transmission of rickettsia to humans via arthropod bites elicits the typical triad of fever, headache, and rash [180]. Microangiitis is the hallmark pathological change associated with rickettsia. Myocarditis is a unusual complication of rickettsia and often appears in acute infections with rickettsia [181, 182].

Chlamydia pneumoniae

Chlamydia pneumoniae is a widespread pathogen in humans and frequently responsible for a large range of infectious diseases. Previous reports have described the involvement of C. pneumoniae in heart-related conditions [183]. C. pneumoniae particles are commonly seen in atherosclerotic plaques and are considered to be associated with atherosclerosis [184]. Additionally, studies have indicated a correlation between C. pneumoniae and abdominal aortic aneurysms as well as valvular disease [184]. Myocarditis, endocarditis, and pericarditis can be observed in patients with C. pneumoniae infection in clinical settings [185].

Spirochete

Lyme disease is caused by Borrelia burgdorferi infection. Impaired heart function often presents as atrioventricular block in Lyme disease [186]. A history of travel to Lyme disease-endemic areas or tick bites should raise suspicion of Lyme disease myocarditis when patients present with wandering erythema and abnormal cardiac function [187]. Symptoms of myocarditis due to Lyme disease are generally mild, transient, and somewhat self-limiting [188]. If recognized and treated early, the prognosis is often favorable [189, 190].

Parasitic myocarditis

Protozoa

Trypanosoma cruzi

In Central and South America, Trypanosoma cruzi is the main causative agent of myocarditis [191]. In humans, infection with the intracellular protozoan T. cruzi often leads to Chagas disease. Although acute infections with T. cruzi presenting with overt signs of myocarditis are uncommon in the clinic, chronic infections often give rise to cardiomyopathy, gastrointestinal disorders, and other organ injuries [192, 193]. Approximately 20–30% of chronic infections may develop cardiomyopathy with symptoms of arrhythmias, systolic dysfunction, and heart failure [193,194,195]. T. cruzi myocarditis is marked by focal inflammation, cardiomyocyte lysis, necrosis, and progressive fibrosis of the heart, with lesions located primarily in the apical and basal portions of the posterior and inferior walls of the heart [193, 196]. The inflammatory cells infiltrated as a result of T. cruzi are initially dominated by neutrophils and macrophages, which are later accompanied by the addition of lymphocytes and eosinophils [197]. The clinical outcome of the disease depends on the virulence of the T. cruzi strain and the genetic predisposition of the infected individual. However, the mechanisms by which T. cruzi induce cardiomyopathy are still being explored.

Toxoplasma gondii

Toxoplasma gondii infection is prevalent in tropical and subtropical areas with poor sanitary conditions. Patients are often infected through contact with contaminated meat, water, or infected felines [198]. In immunocompetent infected individuals, there are often no obvious symptoms. But T. gondii can attack organs such as the brain, heart, and lungs in immunocompromised persons. Of these, the central nervous system is engaged for the most part [199]. Myocarditis caused by T. gondii is more usual in patients with AIDS [200, 201].

Plasmodium

Malaria is among the most prevalent parasitic diseases in the tropics. It presents with vague symptoms such as fever, chills, and headache [202]. Plasmodium falciparum and Plasmodium intertrigo are responsible for the majority of cases of cardiac complications. A meta-study revealed a 7% prevalence of cardiovascular complications among adult patients with symptomatic malaria [203]. Myocarditis and acute coronary syndromes had the highest prevalence of cardiovascular complications [203].

Entamoeba histolytica

Amoebiasis is triggered by Entamoeba histolytica and endemic mainly in tropical developing countries [204, 205]. Following malaria and schistosomiasis, amoebiasis is the third most frequent cause of parasite-induced mortality [205]. Parenteral amebiasis primarily affects the liver [206]. Amebic pericarditis is a relatively uncommon but potentially serious complication of abscesses in the liver, which is observed in the pediatric population [205, 207]. And myocarditis caused by E. histolytica is considerably rarer [208].

Helminths

As public health improves, helminth infections are becoming less widespread. Helminths can damage the heart in the form of eggs, larvae or adults, leading to various cardiac pathologies. For instance, larvae of worms such as the Taenia solium, Trichinella spiralis, and Echinococcus granulosus can invade the heart via the blood circulation or the lymphatic system [209]. Myocarditis induced by helminths is typically characterized by eosinophilic infiltration, although clinical manifestations can vary significantly [209].

Fungal myocarditis

Fungal infections usually occur in individuals with severe immune compromise, such as those undergoing intensive corticosteroid treatment, those with neoplasia, or those with AIDS. Fungal myocarditis arises in disseminated fungal infections, which are often only detected post-mortem [210].

Candida

Candida is a fellow of resident oral and cutaneous flora that may invade several organs, including the heart, under certain conditions [211]. The closest pathogen to fungal myocarditis is Candida. The incidence of myocarditis ranges from 10% to 60% in patients with the presence of disseminated Candida [210]. Candida myocarditis can be observed as white nodular foci in myocardial tissue in which light microscopy reveals necrotic cardiomyocytes and infiltrating inflammatory cells with pseudohyphae and oval bodies [212, 213].

Aspergillus

Invasive aspergillosis takes place in immunocompromised or postoperative cardiac patients [214, 215]. Aspergillus that penetrates the pulmonary vasculature can infect the endocardium upstream, which in turn invades and harms the myocardium [210]. Light microscopy of Aspergillus lesion tissue discloses bouquets or branched mycelium [216]. Blood cultures are generally negative in patients with Aspergillus myocarditis, oftentimes along with a high mortality rate [217].

Cryptococcus neoformans

Cryptococcus neoformans is an opportunistically pathogen, but its culture positivity rate increases with the growing number of AIDS patients. About 5–10% of patients with AIDS may have C. neoformans isolated [218, 219]. The combination of C. neoformans myocarditis in patients with AIDS is often accompanied by poor clinical outcomes [220]. It has been demonstrated in animal studies that C. neoformans may produce focal necrosis of the myocardium with inflammatory process accompanied by lymphocyte and macrophage infiltration [221].

Histoplasma capsulata

The inhalation of Histoplasma capsulatum spores present in soil may result in a mild pulmonary burden. This is particularly prevalent in the central and eastern United States [222]. Among patients suffering from immunocompromised conditions, H. capsulatum has the potential to invade multiple organs, resulting in cases of pericarditis and endocarditis [223]. Myocarditis due to H. capsulatum remains extremely scarce, with only a few cases having been described [224].

Mucorales

Mucormycosis tends to be more epidemic in developing countries, mainly in impaired immunocompetent individuals [225]. Mucorales constitutes 3–13% of fungal infections in autopsy studies [225, 226]. Once the fungus enters the bloodstream, it forms thrombi, which can cause tissue necrosis. The sinuses, lungs, and skin are the most commonly affected sites in mucormycosis [227]. Disseminated mucormycosis has been demonstrated to affect the endocardium and myocardium, resulting in damage [228, 229]. The diagnosis of mucormycosis remains challenging due to the lack of specific serum biomarkers and low culture positivity, with extremely negative consequences [229].

Conclusions

Infectious myocarditis is motivated by what appears to be the combination of pathogen-induced myocardial cell injury and host immune responses. Despite being a significant public health risk, there are still many mysteries surrounding the causative factors of pathogens and host mechanisms. Early recognition and determination of the etiology are crucial for patient prognosis. Timely and effective interventions are necessary to prevent poor clinical outcomes. This review discusses the complex etiology of pathogen-induced myocarditis. Clinicians should be aware of the rare pathogens associated with myocarditis to make an accurate diagnosis.

Availability of data and materials

Not applicable.

Abbreviations

EMB:

Endomyocardial biopsy

DCM:

Dilated cardiomyopathy

CVB3:

Coxsackievirus B3

CAR:

Coxsackievirus-adenovirus receptor

HPEV:

Human parechovirus

ACE2:

Angiotensin-converting enzyme 2

hiPSC-CMs:

Human-induced pluripotent stem cell-derived cardiomyocytes

Adv:

Adenoviruses

RSV:

Respiratory syncytial virus

HHV:

Human herpesvirus

HCMV:

Human cytomegalovirus

EBV:

Epstein–Barr virus

AIDS:

Acquired immunodeficiency syndrome

HIV:

Human immunodeficiency virus

HCV:

Hepatitis C virus

ZV:

Zika virus

PB19:

Parvovirus B19

DIC:

Disseminated intravascular coagulation

References

  1. Magnani JW, Dec GW (2006) Myocarditis: current trends in diagnosis and treatment. Circulation 113(6):876–890. https://doi.org/10.1161/CIRCULATIONAHA.105.584532

    Article  PubMed  Google Scholar 

  2. Ammirati E, Moslehi JJ (2023) Diagnosis and treatment of acute myocarditis: a review. JAMA 329(13):1098–1113. https://doi.org/10.1001/jama.2023.3371

    Article  PubMed  Google Scholar 

  3. Blauwet LA, Cooper LT (2010) Myocarditis. Prog Cardiovasc Dis 52(4):274–288. https://doi.org/10.1016/j.pcad.2009.11.006

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114(15):1581–1590. https://doi.org/10.1161/CIRCULATIONAHA.105.606509

    Article  PubMed  Google Scholar 

  5. McCarthy MK, Procario MC, Twisselmann N, Wilkinson JE, Archambeau AJ, Michele DE et al (2015) Proinflammatory effects of interferon gamma in mouse adenovirus 1 myocarditis. J Virol 89(1):468–479. https://doi.org/10.1128/JVI.02077-14

    Article  CAS  PubMed  Google Scholar 

  6. Maron BJ, Haas TS, Ahluwalia A, Murphy CJ, Garberich RF (2016) Demographics and epidemiology of sudden deaths in young competitive athletes: from the United States national registry. Am J Med 129(11):1170–1177. https://doi.org/10.1016/j.amjmed.2016.02.031

    Article  PubMed  Google Scholar 

  7. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO (2009) Sudden deaths in young competitive athletes. Circulation 119(8):1085–1092. https://doi.org/10.1161/circulationaha.108.804617

    Article  PubMed  Google Scholar 

  8. Sagar S, Liu PP, Cooper LT Jr (2012) Myocarditis. Lancet 379(9817):738–747. https://doi.org/10.1016/S0140-6736(11)60648-X

    Article  PubMed  Google Scholar 

  9. Fung G, Luo H, Qiu Y, Yang D, McManus B (2016) Myocarditis. Circ Res 118(3):496–514. https://doi.org/10.1161/CIRCRESAHA.115.306573

    Article  CAS  PubMed  Google Scholar 

  10. Pollack A, Kontorovich AR, Fuster V, Dec GW (2015) Viral myocarditis–diagnosis, treatment options, and current controversies. Nat Rev Cardiol 12(11):670–680. https://doi.org/10.1038/nrcardio.2015.108

    Article  PubMed  Google Scholar 

  11. Tschope C, Cooper LT, Torre-Amione G, Van Linthout S (2019) Management of myocarditis-related cardiomyopathy in adults. Circ Res 124(11):1568–1583. https://doi.org/10.1161/CIRCRESAHA.118.313578

    Article  CAS  PubMed  Google Scholar 

  12. Law YM, Lal AK, Chen S, Čiháková D, Cooper LT, Deshpande S et al (2021) Diagnosis and management of myocarditis in children. Circulation. https://doi.org/10.1161/cir.0000000000001001

    Article  PubMed  Google Scholar 

  13. Cooper LT Jr (2009) Myocarditis. N Engl J Med 360(15):1526–1538. https://doi.org/10.1056/NEJMra0800028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fabre A, Sheppard MN (2006) Sudden adult death syndrome and other non-ischaemic causes of sudden cardiac death. Heart 92(3):316–320. https://doi.org/10.1136/hrt.2004.045518

    Article  CAS  PubMed  Google Scholar 

  15. Herskowitz A, Campbell S, Deckers J, Kasper EK, Boehmer J, Hadian D et al (1993) Demographic features and prevalence of idiopathic myocarditis in patients undergoing endomyocardial biopsy. Am J Cardiol 71(11):982–986. https://doi.org/10.1016/0002-9149(93)90918-3

    Article  CAS  PubMed  Google Scholar 

  16. Wu L, Ong S, Talor MV, Barin JG, Baldeviano GC, Kass DA et al (2014) Cardiac fibroblasts mediate IL-17A–driven inflammatory dilated cardiomyopathy. J Exp Med 211(7):1449–1464. https://doi.org/10.1084/jem.20132126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuhl U, Pauschinger M, Seeberg B, Lassner D, Noutsias M, Poller W, Schultheiss HP (2005) Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 112(13):1965–1970. https://doi.org/10.1161/CIRCULATIONAHA.105.548156

    Article  PubMed  Google Scholar 

  18. Liu PP, Mason JW (2001) Advances in the understanding of myocarditis. Circulation 104(9):1076–1082. https://doi.org/10.1161/hc3401.095198

    Article  CAS  PubMed  Google Scholar 

  19. Yajima T, Knowlton KU (2009) Viral myocarditis: from the perspective of the virus. Circulation 119(19):2615–2624. https://doi.org/10.1161/CIRCULATIONAHA.108.766022

    Article  PubMed  Google Scholar 

  20. Rose NR (2014) Learning from myocarditis: mimicry, chaos and black holes. F1000Prime Rep. https://doi.org/10.12703/P6-25

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fairley CK, Ryan M, Wall PG, Weinberg J (1996) The organisms reported to cause infective myocarditis and pericarditis in England and Wales. J Infect 32(3):223–225. https://doi.org/10.1016/s0163-4453(96)80023-5

    Article  CAS  PubMed  Google Scholar 

  22. Badorff C, Lee GH, Lamphear BJ, Martone ME, Campbell KP, Rhoads RE, Knowlton KU (1999) Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5(3):320–326. https://doi.org/10.1038/6543

    Article  CAS  PubMed  Google Scholar 

  23. Luo H, Wong J, Wong B (2010) Protein degradation systems in viral myocarditis leading to dilated cardiomyopathy. Cardiovasc Res 85(2):347–356. https://doi.org/10.1093/cvr/cvp225

    Article  CAS  PubMed  Google Scholar 

  24. Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124(1):119–131. https://doi.org/10.1016/j.cell.2005.10.035

    Article  CAS  PubMed  Google Scholar 

  25. Garmaroudi FS, Marchant D, Hendry R, Luo H, Yang D, Ye X et al (2015) Coxsackievirus B3 replication and pathogenesis. Future Microbiol 10(4):629–653. https://doi.org/10.2217/fmb.15.5

    Article  CAS  PubMed  Google Scholar 

  26. Kandolf R, Hofschneider PH (1986) Enterovirus-induced cardiomyopathy. In: Notkins AL, Oldstone MBA (eds) Concepts in viral pathogenesis III. Springer, New York. https://doi.org/10.1007/978-1-4613-8890-6_33

    Chapter  Google Scholar 

  27. Kerekatte V, Keiper BD, Badorff C, Cai A, Knowlton KU, Rhoads RE (1999) Cleavage of poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: Another mechanism for host protein synthesis shutoff? J Virol 73(1):709–717. https://doi.org/10.1128/JVI.73.1.709-717.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kahvejian A, Svitkin YV, Sukarieh R, M’Boutchou MN, Sonenberg N (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19(1):104–113. https://doi.org/10.1101/gad.1262905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Venteo L, Bourlet T, Renois F, Douche-Aourik F, Mosnier JF, Maison GL et al (2010) Enterovirus-related activation of the cardiomyocyte mitochondrial apoptotic pathway in patients with acute myocarditis. Eur Heart J 31(6):728–736. https://doi.org/10.1093/eurheartj/ehp489

    Article  CAS  PubMed  Google Scholar 

  30. Saraste A, Arola A, Vuorinen T, Kyto V, Kallajoki M, Pulkki K et al (2003) Cardiomyocyte apoptosis in experimental coxsackievirus B3 myocarditis. Cardiovasc Pathol 12(5):255–262. https://doi.org/10.1016/s1054-8807(03)00077-2

    Article  PubMed  Google Scholar 

  31. Mukherjee A, Morosky SA, Delorme-Axford E, Dybdahl-Sissoko N, Oberste MS, Wang T, Coyne CB (2011) The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog 7(3):e1001311. https://doi.org/10.1371/journal.ppat.1001311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mandadapu SR, Weerawarna PM, Prior AM, Uy RA, Aravapalli S, Alliston KR et al (2013) Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus. Bioorg Med Chem Lett 23(13):3709–3712. https://doi.org/10.1016/j.bmcl.2013.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sevignani C, Calin GA, Siracusa LD, Croce CM (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17(3):189–202. https://doi.org/10.1007/s00335-005-0066-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L et al (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3(6):499–506. https://doi.org/10.1161/CIRCGENETICS.110.957415

    Article  PubMed  Google Scholar 

  35. Ho BC, Yu SL, Chen JJ, Chang SY, Yan BS, Hong QS et al (2011) Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 9(1):58–69. https://doi.org/10.1016/j.chom.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  36. Tong L, Lin L, Wu S, Guo Z, Wang T, Qin Y et al (2013) MiR-10a* up-regulates coxsackievirus B3 biosynthesis by targeting the 3D-coding sequence. Nucleic Acids Res 41(6):3760–3771. https://doi.org/10.1093/nar/gkt058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu HF, Gao XT, Lin JY, Xu XH, Hu J, Ding YJ, Zhu SH (2017) MicroRNA-20b suppresses the expression of ZFP-148 in viral myocarditis. Mol Cell Biochem 429(1–2):199–210. https://doi.org/10.1007/s11010-017-2947-7

    Article  CAS  PubMed  Google Scholar 

  38. Hemida MG, Ye X, Zhang HM, Hanson PJ, Liu Z, McManus BM, Yang D (2013) MicroRNA-203 enhances coxsackievirus B3 replication through targeting zinc finger protein-148. Cell Mol Life Sci 70(2):277–291. https://doi.org/10.1007/s00018-012-1104-4

    Article  CAS  PubMed  Google Scholar 

  39. Ye X, Hemida MG, Qiu Y, Hanson PJ, Zhang HM, Yang D (2013) MiR-126 promotes coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/beta-catenin signal pathways. Cell Mol Life Sci 70(23):4631–4644. https://doi.org/10.1007/s00018-013-1411-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Daba TM, Zhao Y, Pan Z (2019) Advancement of mechanisms of coxsackie virus B3-induced myocarditis pathogenesis and the potential therapeutic targets. Curr Drug Targets 20(14):1461–1473. https://doi.org/10.2174/1389450120666190618124722

    Article  CAS  PubMed  Google Scholar 

  41. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7(10):767–777. https://doi.org/10.1038/nri2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lunemann JD, Munz C (2009) Autophagy in CD4+ T-cell immunity and tolerance. Cell Death Differ 16(1):79–86. https://doi.org/10.1038/cdd.2008.113

    Article  CAS  PubMed  Google Scholar 

  43. Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses WB, Whitton JL (2010) Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J Virol 84(23):12110–12124. https://doi.org/10.1128/JVI.01417-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wileman T (2006) Aggresomes and autophagy generate sites for virus replication. Science 312(5775):875–878. https://doi.org/10.1126/science.1126766

    Article  CAS  PubMed  Google Scholar 

  45. Gao G, Zhang J, Si X, Wong J, Cheung C, McManus B, Luo H (2008) Proteasome inhibition attenuates coxsackievirus-induced myocardial damage in mice. Am J Physiol Heart Circ Physiol 295(1):H401–H408. https://doi.org/10.1152/ajpheart.00292.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Gao B, Xiong S (2014) Involvement of NLRP3 inflammasome in CVB3-induced viral myocarditis. Am J Physiol Heart Circ Physiol 307(10):H1438–H1447. https://doi.org/10.1152/ajpheart.00441.2014

    Article  CAS  PubMed  Google Scholar 

  47. Rehren F, Ritter B, Dittrich-Breiholz O, Henke A, Lam E, Kati S et al (2013) Induction of a broad spectrum of inflammation-related genes by Coxsackievirus B3 requires Interleukin-1 signaling. Med Microbiol Immunol 202(1):11–23. https://doi.org/10.1007/s00430-012-0245-2

    Article  CAS  PubMed  Google Scholar 

  48. de Crom SC, Rossen JW, van Furth AM, Obihara CC (2016) Enterovirus and parechovirus infection in children: a brief overview. Eur J Pediatr 175(8):1023–1029. https://doi.org/10.1007/s00431-016-2725-7

    Article  PubMed  PubMed Central  Google Scholar 

  49. Khatami A, McMullan BJ, Webber M, Stewart P, Francis S, Timmers KJ et al (2015) Sepsis-like disease in infants due to human parechovirus type 3 during an outbreak in Australia. Clin Infect Dis 60(2):228–236. https://doi.org/10.1093/cid/ciu784

    Article  PubMed  Google Scholar 

  50. Esposito S, Rahamat-Langendoen J, Ascolese B, Senatore L, Castellazzi L, Niesters HG (2014) Pediatric parechovirus infections. J Clin Virol 60(2):84–89. https://doi.org/10.1016/j.jcv.2014.03.003

    Article  PubMed  Google Scholar 

  51. Saikruang W, Khamrin P, Suantai B, Okitsu S, Hayakawa S, Ushijima H, Maneekarn N (2014) Detection of diarrheal viruses circulating in adult patients in Thailand. Arch Virol 159(12):3371–3375. https://doi.org/10.1007/s00705-014-2191-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harvala H, Robertson I, Chieochansin T, McWilliam Leitch EC, Templeton K, Simmonds P (2009) Specific association of human parechovirus type 3 with sepsis and fever in young infants, as identified by direct typing of cerebrospinal fluid samples. J Infect Dis 199(12):1753–1760. https://doi.org/10.1086/599094

    Article  CAS  PubMed  Google Scholar 

  53. Kong KL, Lau JSY, Goh SM, Wilson HL, Catton M, Korman TM (2017) Myocarditis caused by human parechovirus in adult. Emerg Infect Dis 23(9):1571–1573. https://doi.org/10.3201/eid2309.161256

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ehrnst A, Eriksson M (1993) Epidemiological features of type 22 echovirus infection. Scand J Infect Dis 25(3):275–281. https://doi.org/10.3109/00365549309008499

    Article  CAS  PubMed  Google Scholar 

  55. Mardekian SK, Fortuna D, Nix A, Bhatti T, Wiley CA, Flanders A et al (2015) Severe human parechovirus type 3 myocarditis and encephalitis in an adolescent with hypogammaglobulinemia. Int J Infect Dis 36:6–8. https://doi.org/10.1016/j.ijid.2015.05.008

    Article  PubMed  Google Scholar 

  56. Maller HM, Powars DF, Horowitz RE, Portnoy B (1967) Fatal myocarditis associated with ECHO virus, type 22, infection in a child with apparent immunological deficiency. J Pediatr 71(2):204–210. https://doi.org/10.1016/s0022-3476(67)80073-8

    Article  CAS  PubMed  Google Scholar 

  57. Holm GH, Pruijssers AJ, Li L, Danthi P, Sherry B, Dermody TS (2010) Interferon regulatory factor 3 attenuates reovirus myocarditis and contributes to viral clearance. J Virol 84(14):6900–6908. https://doi.org/10.1128/JVI.01742-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sherry B, Torres J, Blum MA (1998) Reovirus induction of and sensitivity to beta interferon in cardiac myocyte cultures correlate with induction of myocarditis and are determined by viral core proteins. J Virol 72(2):1314–1323. https://doi.org/10.1128/JVI.72.2.1314-1323.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Irvin SC, Zurney J, Ooms LS, Chappell JD, Dermody TS, Sherry B (2012) A single-amino-acid polymorphism in reovirus protein mu2 determines repression of interferon signaling and modulates myocarditis. J Virol 86(4):2302–2311. https://doi.org/10.1128/JVI.06236-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Terheggen F, Benedikz E, Frissen PH, Brinkman K (2003) Myocarditis associated with reovirus infection. Eur J Clin Microbiol Infect Dis 22(3):197–198. https://doi.org/10.1007/s10096-003-0884-8

    Article  CAS  PubMed  Google Scholar 

  61. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F et al (2020) Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 5(7):802–810. https://doi.org/10.1001/jamacardio.2020.0950

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bouchaala A, Kerrouani O, Yassini Y, Tadili SJ, Tachinante R, Oukerraj L et al (2023) Acute symptomatic COVID-19 myocarditis: case series. IHJ Cardiovasc Case Rep 7(2):53–57. https://doi.org/10.1016/j.ihjccr.2023.05.004

    Article  Google Scholar 

  64. Hikmet F, Mear L, Edvinsson A, Micke P, Uhlen M, Lindskog C (2020) The protein expression profile of ACE2 in human tissues. Mol Syst Biol 16(7):e9610. https://doi.org/10.15252/msb.20209610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lindner D, Fitzek A, Brauninger H, Aleshcheva G, Edler C, Meissner K et al (2020) Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol 5(11):1281–1285. https://doi.org/10.1001/jamacardio.2020.3551

    Article  PubMed  Google Scholar 

  66. Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM et al (2020) COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res 116(10):1666–1687. https://doi.org/10.1093/cvr/cvaa106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marchiano S, Hsiang TY, Khanna A, Higashi T, Whitmore LS, Bargehr J et al (2021) SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function. Stem Cell Rep 16(3):478–492. https://doi.org/10.1016/j.stemcr.2021.02.008

    Article  CAS  Google Scholar 

  68. Chen C, Zhou Y, Wang DW (2020) SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz 45(3):230–232. https://doi.org/10.1007/s00059-020-04909-z

    Article  PubMed  PubMed Central  Google Scholar 

  69. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D et al (2020) Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 5(7):819–824. https://doi.org/10.1001/jamacardio.2020.1096

    Article  PubMed  Google Scholar 

  70. Bowles NE, Ni J, Kearney DL, Pauschinger M, Schultheiss HP, McCarthy R et al (2003) Detection of viruses in myocardial tissues by polymerase chain reaction evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol 42(3):466–472. https://doi.org/10.1016/s0735-1097(03)00648-x

    Article  PubMed  Google Scholar 

  71. Martin AB, Webber S, Fricker FJ, Jaffe R, Demmler G, Kearney D et al (1994) Acute myocarditis: rapid diagnosis by PCR in children. Circulation 90(1):330–339. https://doi.org/10.1161/01.cir.90.1.330

    Article  CAS  PubMed  Google Scholar 

  72. Warren-Gash C, Hayward AC, Hemingway H, Denaxas S, Thomas SL, Timmis AD et al (2012) Influenza infection and risk of acute myocardial infarction in England and Wales: a CALIBER self-controlled case series study. J Infect Dis 206(11):1652–1659. https://doi.org/10.1093/infdis/jis597

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vijayan S, Chase A, Barry J (2012) Swine flu myocarditis presenting with life threatening ventricular tachycardia. J R Soc Med 105(7):314–316. https://doi.org/10.1258/jrsm.2012.110177

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chacko B, Peter JV, Pichamuthu K, Ramakrishna K, Moorthy M, Karthik R, John G (2012) Cardiac manifestations in patients with pandemic (H1N1) 2009 virus infection needing intensive care. J Crit Care 27(1):106e–1. https://doi.org/10.1016/j.jcrc.2011.05.016

    Article  Google Scholar 

  75. Corrales-Medina VF, Madjid M, Musher DM (2010) Role of acute infection in triggering acute coronary syndromes. Lancet Infect Dis 10(2):83–92. https://doi.org/10.1016/S1473-3099(09)70331-7

    Article  PubMed  Google Scholar 

  76. Filgueiras-Rama D, Vasilijevic J, Jalife J, Noujaim SF, Alfonso JM, Nicolas-Avila JA et al (2021) Human influenza A virus causes myocardial and cardiac-specific conduction system infections associated with early inflammation and premature death. Cardiovasc Res 117(3):876–889. https://doi.org/10.1093/cvr/cvaa117

    Article  CAS  PubMed  Google Scholar 

  77. Huang M, Bigos D, Levine M (1998) Ventricular arrhythmia associated with respiratory syncytial viral infection. Pediatr Cardiol 19(6):498–500. https://doi.org/10.1007/s002469900369

    Article  CAS  PubMed  Google Scholar 

  78. Menchise A (2011) Myocarditis in the setting of RSV bronchiolitis. Fetal Pediatr Pathol 30(1):64–68. https://doi.org/10.3109/15513815.2010.505632

    Article  PubMed  Google Scholar 

  79. Cohen NA (1963) Myocarditis in prodromal measles: report of a case. Am J Clin Pathol 40(1):50–53. https://doi.org/10.1093/ajcp/40.1.50

    Article  CAS  PubMed  Google Scholar 

  80. Giustra FX (1954) Final report on a case of myocarditis following measles. Arch Pediatrics Adolesc Med. https://doi.org/10.1001/archpedi.1954.02050090603011

    Article  Google Scholar 

  81. Finkel HE (1964) Measles myocarditis. Am Heart J 67(5):679–683. https://doi.org/10.1016/0002-8703(64)90339-4

    Article  CAS  PubMed  Google Scholar 

  82. Lee AD, Clemmons NS, Patel M, Gastañaduy PA (2019) International importations of measles virus into the United States during the postelimination era, 2001–2016. J Infect Dis 219(10):1616–1623. https://doi.org/10.1093/infdis/jiy701

    Article  PubMed  Google Scholar 

  83. Wang X-Y, Zhang X-J, Xia X, Chang S-Z, Wu A-Z (2023) Epidemiological and clinical characteristics of measles in Jinan, Shandong Province, China, from 1991 to 2022. Int J Gen Med 16:2305–2312. https://doi.org/10.2147/ijgm.S407121

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pellett PE, Ablashi DV, Ambros PF, Agut H, Caserta MT, Descamps V et al (2012) Chromosomally integrated human herpesvirus 6: questions and answers. Rev Med Virol 22(3):144–155. https://doi.org/10.1002/rmv.715

    Article  CAS  PubMed  Google Scholar 

  85. Ozdemir R, Kucuk M, Dibeklioglu SE (2018) Report of a myocarditis outbreak among pediatric patients: Human herpesvirus 7 as a causative agent? J Trop Pediatr 64(6):468–471. https://doi.org/10.1093/tropej/fmx093

    Article  PubMed  Google Scholar 

  86. Sinagra G, Anzini M, Pereira NL, Bussani R, Finocchiaro G, Bartunek J, Merlo M (2016) Myocarditis in clinical practice. Mayo Clin Proc 91(9):1256–1266. https://doi.org/10.1016/j.mayocp.2016.05.013

    Article  PubMed  Google Scholar 

  87. Escher F, Kuhl U, Gross U, Westermann D, Poller W, Tschope C et al (2015) Aggravation of left ventricular dysfunction in patients with biopsy-proven cardiac human herpesvirus A and B infection. J Clin Virol 6:31–35. https://doi.org/10.1016/j.jcv.2014.11.026

    Article  Google Scholar 

  88. Leveque N, Boulagnon C, Brasselet C, Lesaffre F, Boutolleau D, Metz D et al (2011) A fatal case of human herpesvirus 6 chronic myocarditis in an immunocompetent adult. J Clin Virol 52(2):142–145. https://doi.org/10.1016/j.jcv.2011.06.017

    Article  PubMed  Google Scholar 

  89. Tang H, Mori Y (2015) Determinants of human CD134 essential for entry of human herpesvirus 6B. J Virol 89(19):10125–10129. https://doi.org/10.1128/JVI.01606-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kuhl U, Lassner D, Wallaschek N, Gross UM, Krueger GR, Seeberg B et al (2015) Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment. Eur J Heart Fail 17(1):9–19. https://doi.org/10.1002/ejhf.194

    Article  CAS  PubMed  Google Scholar 

  91. Bonavita CM, White TM, Francis J, Cardin RD (2020) Heart dysfunction following long-term murine cytomegalovirus infection: fibrosis, hypertrophy, and tachycardia. Viral Immunol 33(3):237–245. https://doi.org/10.1089/vim.2020.0007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wall NA, Chue CD, Edwards NC, Pankhurst T, Harper L, Steeds RP et al (2013) Cytomegalovirus seropositivity is associated with increased arterial stiffness in patients with chronic kidney disease. PLoS ONE 8(2):e55686. https://doi.org/10.1371/journal.pone.0055686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cohen JI (2000) Epstein–Barr virus infection. N Engl J Med 343(7):481–492. https://doi.org/10.1056/nejm200008173430707

    Article  CAS  PubMed  Google Scholar 

  94. Odumade OA, Hogquist KA, Balfour HH Jr (2011) Progress and problems in understanding and managing primary Epstein–Barr virus infections. Clin Microbiol Rev 24(1):193–209. https://doi.org/10.1128/CMR.00044-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Damania B, Kenney SC, Raab-Traub N (2022) Epstein–Barr virus: biology and clinical disease. Cell 185(20):3652–3670. https://doi.org/10.1016/j.cell.2022.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chimenti C, Verardo R, Grande C, Francone M, Frustaci A (2020) Infarct-like myocarditis with coronary vasculitis and aneurysm formation caused by Epstein–Barr virus infection. ESC Heart Fail 7(3):938–941. https://doi.org/10.1002/ehf2.12611

    Article  PubMed  PubMed Central  Google Scholar 

  97. Xiao H, Hu B, Luo R, Hu H, Zhang J, Kuang W et al (2020) Chronic active Epstein–Barr virus infection manifesting as coronary artery aneurysm and uveitis. Virol J 17(1):166. https://doi.org/10.1186/s12985-020-01409-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kawamura Y, Miura H, Matsumoto Y, Uchida H, Kudo K, Hata T et al (2016) A case of Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis with severe cardiac complications. BMC Pediatr 16(1):172. https://doi.org/10.1186/s12887-016-0718-3

    Article  PubMed  PubMed Central  Google Scholar 

  99. Aknouk M, Choe S, Osborn H, Kanukuntla A, Kata P, Okere A, Cheriyath P (2022) Recognizing rare sequelae of Epstein–Barr virus myocarditis leading to dilated cardiomyopathy and acute congestive heart failure with multivalvular regurgitation. Cureus. https://doi.org/10.7759/cureus.21504

    Article  PubMed  PubMed Central  Google Scholar 

  100. Watanabe M, Panetta GL, Piccirillo F, Spoto S, Myers J, Serino FM et al (2020) Acute Epstein–Barr related myocarditis: an unusual but life-threatening disease in an immunocompetent patient. J Cardiol Cases 21(4):137–140. https://doi.org/10.1016/j.jccase.2019.12.001

    Article  PubMed  Google Scholar 

  101. Paul R, Khan S (2019) A rare case of Epstein Barr viral myocarditis-induced cardiogenic shock. Chest. https://doi.org/10.1016/j.chest.2019.08.172

    Article  Google Scholar 

  102. Takano H, Nakagawa K, Ishio N, Daimon M, Daimon M, Kobayashi Y et al (2008) Active myocarditis in a patient with chronic active Epstein–Barr virus infection. Int J Cardiol 130(1):e11–e13. https://doi.org/10.1016/j.ijcard.2007.07.040

    Article  PubMed  Google Scholar 

  103. Sui M, Tang W, Wu C (2018) Myocardial calcification found in Epstein–Barr viral myocarditis and rhabdomyolysis: a case report. Medicine 97(49):e13582. https://doi.org/10.1097/MD.0000000000013582

    Article  PubMed  PubMed Central  Google Scholar 

  104. Barbarini G, Barbaro G (2003) Incidence of the involvement of the cardiovascular system in HIV infection. AIDS 17:S46–S50. https://doi.org/10.1097/00002030-200304001-00007

    Article  Google Scholar 

  105. Fiala M, Popik W, Qiao JH, Lossinsky AS, Alce T, Tran K et al (2004) HIV-1 induces cardiomyopathyby cardiomyocyte invasion and gp120, Tat, and cytokine apoptotic signaling. Cardiovasc Toxicol 4(2):97–107. https://doi.org/10.1385/ct:4:2:097

    Article  CAS  PubMed  Google Scholar 

  106. Barbaro G, Fisher SD, Lipshultz SE (2001) Pathogenesis of HIV-associated cardiovascular complications. Lancet Infect Dis 1(2):115–124. https://doi.org/10.1016/S1473-3099(01)00067-6

    Article  CAS  PubMed  Google Scholar 

  107. Matsumori A, Matoba Y, Sasayama S (1995) Dilated cardiomyopathy associated with hepatitis C virus infection. Circulation 92(9):2519–2525. https://doi.org/10.1161/01.cir.92.9.2519

    Article  CAS  PubMed  Google Scholar 

  108. Ilyas SZ, Tabassum R, Hamed H, Rehman SU, Qadri I (2017) Hepatitis C virus-associated extrahepatic manifestations in lung and heart and antiviral therapy-related cardiopulmonary toxicity. Viral Immunol 30(9):633–641. https://doi.org/10.1089/vim.2017.0009

    Article  CAS  PubMed  Google Scholar 

  109. Matsumori A, Ohashi N, Hasegawa K, Sasayama S, Eto T, Imaizumi T et al (1998) Hepatitis C virus infection and heart diseases: a multicenter study in Japan. Jpn Circ J 62(5):389–391. https://doi.org/10.1253/jcj.62.389

    Article  CAS  PubMed  Google Scholar 

  110. Matsumori A (2005) Hepatitis C virus infection and cardiomyopathies. Circ Res 96(2):144–147. https://doi.org/10.1161/01.Res.0000156077.54903.67

    Article  CAS  PubMed  Google Scholar 

  111. Matsumori A, Shimada T, Chapman NM, Tracy SM, Mason JW (2006) Myocarditis and heart failure associated with hepatitis C virus infection. J Card Fail 12(4):293–298. https://doi.org/10.1016/j.cardfail.2005.11.004

    Article  PubMed  Google Scholar 

  112. Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X et al (2016) Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19(5):672. https://doi.org/10.1016/j.stem.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  113. Aletti M, Lecoules S, Kanczuga V, Soler C, Maquart M, Simon F, Leparc-Goffart I (2017) Transient myocarditis associated with acute Zika virus infection. Clin Infect Dis 64(5):678–679. https://doi.org/10.1093/cid/ciw802

    Article  CAS  PubMed  Google Scholar 

  114. Angelidou A, Michael Z, Hotz A, Friedman K, Emani S, LaRovere K, Christou H (2018) Is there more to Zika? Complex cardiac disease in a case of congenital Zika syndrome. Neonatology 113(2):177–182. https://doi.org/10.1159/000484656

    Article  PubMed  Google Scholar 

  115. Dutra WO, Orofino DHG, Passos SRL, de Oliveira RVC, Farias CVB, Leite MFMP et al (2018) Cardiac findings in infants with in utero exposure to Zika virus—a cross sectional study. PLOS Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0006362

    Article  PubMed  PubMed Central  Google Scholar 

  116. Santana MB, Lamas CC, Athayde JG, Calvet G, Moreira J, De Lorenzo A (2019) Congenital Zika syndrome: Is the heart part of its spectrum? Clin Microbiol Infect 25(8):1043–1044. https://doi.org/10.1016/j.cmi.2019.03.020

    Article  CAS  PubMed  Google Scholar 

  117. Bai C, Hao J, Li S, Gao GF, Nie Y, Han P (2021) Myocarditis and heart function impairment occur in neonatal mice following in utero exposure to the Zika virus. J Cell Mol Med 25(5):2730–2733. https://doi.org/10.1111/jcmm.16064

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hirsch AJ, Smith JL, Haese NN, Broeckel RM, Parkins CJ, Kreklywich C et al (2017) Zika virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog 13(3):e1006219. https://doi.org/10.1371/journal.ppat.1006219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Norja P, Hokynar K, Aaltonen LM, Chen R, Ranki A, Partio EK et al (2006) Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci USA 103(19):7450–7453. https://doi.org/10.1073/pnas.0602259103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hassan K, Kyriakakis C, Doubell A, Van Zyl G, Claassen M, Zaharie D, Herbst P (2022) Prevalence of cardiotropic viruses in adults with clinically suspected myocarditis in South Africa. Open Heart. https://doi.org/10.1136/openhrt-2021-001942

    Article  PubMed  PubMed Central  Google Scholar 

  121. Koepsell SA, Anderson DR, Radio SJ (2012) Parvovirus B19 is a bystander in adult myocarditis. Cardiovasc Pathol 21(6):476–481. https://doi.org/10.1016/j.carpath.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  122. Klingel K, Sauter M, Bock CT, Szalay G, Schnorr JJ, Kandolf R (2004) Molecular pathology of inflammatory cardiomyopathy. Med Microbiol Immunol 193(2–3):101–107. https://doi.org/10.1007/s00430-003-0190-1

    Article  CAS  PubMed  Google Scholar 

  123. Bock CT, Klingel K, Kandolf R (2010) Human parvovirus B19-associated myocarditis. N Engl J Med 362(13):1248–1249. https://doi.org/10.1056/NEJMc0911362

    Article  CAS  PubMed  Google Scholar 

  124. Wasi F, Shuter J (2003) Primary bacterial infection of the myocardium. Front Biosci 8:s228–s231. https://doi.org/10.2741/1021

    Article  CAS  PubMed  Google Scholar 

  125. Ma M, Boyd JT, Trinh HT, Coombs JW, Fermann GJ (2007) Fatal myocarditis due to clostridium novyi type B in a previously healthy woman: case report and literature review. Scand J Infect Dis 39(1):77–80. https://doi.org/10.1080/00365540600786531

    Article  PubMed  Google Scholar 

  126. Pannaraj PS, Hulten KG, Gonzalez BE, Mason EO Jr, Kaplan SL (2006) Infective pyomyositis and myositis in children in the era of community-acquired, methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 43(8):953–960. https://doi.org/10.1086/507637

    Article  PubMed  Google Scholar 

  127. McGee M, Shiel E, Brienesse S, Murch S, Pickles R, Leitch J (2018) Staphylococcus aureus myocarditis with associated left ventricular apical thrombus. Case Rep Cardiol 2018:7017286. https://doi.org/10.1155/2018/7017286

    Article  PubMed  PubMed Central  Google Scholar 

  128. Meena DS, Kumar D, Bohra GK, Garg MK, Midha N, Yadav T, Yadav P (2021) Concurrent methicillin-resistant Staphylococcus aureus septicemia and thyroid abscess in a young male with dengue. Infect Disord Drug Targets 21(1):156–160. https://doi.org/10.2174/1871526520666200312160701

    Article  CAS  PubMed  Google Scholar 

  129. Sarda C, Palma P, Rello J (2019) Severe influenza: overview in critically ill patients. Curr Opin Crit Care 25(5):449–457. https://doi.org/10.1097/MCC.0000000000000638

    Article  PubMed  Google Scholar 

  130. Trpkov C, Chiu M, Kang EY, Box A, Grant A (2020) Fulminant bacterial myocarditis presenting as myocardial infarction. JACC Case Rep 2(5):830–831. https://doi.org/10.1016/j.jaccas.2020.03.023

    Article  PubMed  PubMed Central  Google Scholar 

  131. Valles J, Diaz E, Martin-Loeches I, Bacelar N, Saludes P, Lema J et al (2016) Evolution over a 15-year period of the clinical characteristics and outcomes of critically ill patients with severe community-acquired pneumonia. Med Intensiv 40(4):238–245. https://doi.org/10.1016/j.medin.2015.07.005

    Article  CAS  Google Scholar 

  132. Brown AO, Mann B, Gao G, Hankins JS, Humann J, Giardina J et al (2014) Streptococcus pneumoniae translocates into the myocardium and forms unique microlesions that disrupt cardiac function. PLoS Pathog 10(9):e1004383. https://doi.org/10.1371/journal.ppat.1004383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gilley RP, Gonzalez-Juarbe N, Shenoy AT, Reyes LF, Dube PH, Restrepo MI, Orihuela CJ (2016) Infiltrated macrophages die of pneumolysin-mediated necroptosis following pneumococcal myocardial invasion. Infect Immun 84(5):1457–1469. https://doi.org/10.1128/IAI.00007-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shenoy AT, Brissac T, Gilley RP, Kumar N, Wang Y, Gonzalez-Juarbe N et al (2017) Streptococcus pneumoniae in the heart subvert the host response through biofilm-mediated resident macrophage killing. PLoS Pathog 13(8):e1006582. https://doi.org/10.1371/journal.ppat.1006582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ahmed AR, Townsend L, Tuite H, Fleming C (2017) A peculiar case of invasive Streptococcus pneumoniae. Case Rep Infect Dis 2017:1530507. https://doi.org/10.1155/2017/1530507

    Article  PubMed  PubMed Central  Google Scholar 

  136. Schulz R, Andreas S, Weise B, Werner GS (1997) Acute papillary muscle rupture in a patient with clostridial sepsis. J Intern Med 241(3):253–255. https://doi.org/10.1046/j.1365-2796.1997.100115000.x

    Article  CAS  PubMed  Google Scholar 

  137. Hausmann R, Albert F, Geissdorfer W, Betz P (2004) Clostridium fallax associated with sudden death in a 16-year-old boy. J Med Microbiol 53(Pt 6):581–583. https://doi.org/10.1099/jmm.0.05495-0

    Article  PubMed  Google Scholar 

  138. Keese M, Nichterlein T, Hahn M, Magdeburg R, Karaorman M, Back W et al (2003) Gas gangrene pyaemia with myocardial abscess formation–fatal outcome from a rare infection nowadays. Resuscitation 58(2):219–225. https://doi.org/10.1016/s0300-9572(03)00121-7

    Article  PubMed  Google Scholar 

  139. Disson O, Moura A, Lecuit M (2021) Making sense of the biodiversity and virulence of Listeria monocytogenes. Trends Microbiol 29(9):811–822. https://doi.org/10.1016/j.tim.2021.01.008

    Article  CAS  PubMed  Google Scholar 

  140. Bou Ghanem EN, Jones GS, Myers-Morales T, Patil PD, Hidayatullah AN, D’Orazio SE (2012) InlA promotes dissemination of Listeria monocytogenes to the mesenteric lymph nodes during food borne infection of mice. PLoS Pathog 8(11):e1003015. https://doi.org/10.1371/journal.ppat.1003015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Alonzo F, Bobo LD, Skiest DJ, Freitag NE (2011) Evidence for subpopulations of Listeria monocytogenes with enhanced invasion of cardiac cells. J Med Microbiol 60(Pt 4):423–434. https://doi.org/10.1099/jmm.0.027185-0

    Article  PubMed  PubMed Central  Google Scholar 

  142. Adler A, Fimbres A, Marcinak J, Johnson A, Zheng X, Hasegawa S, Shulman ST (2009) Inflammatory pseudotumor of the heart caused by Listeria monocytogenes infection. J Infect 58(2):161–163. https://doi.org/10.1016/j.jinf.2008.12.007

    Article  PubMed  Google Scholar 

  143. Antolin J, Gutierrez A, Segoviano R, Lopez R, Ciguenza R (2008) Endocarditis due to Listeria: description of two cases and review of the literature. Eur J Intern Med 19(4):295–296. https://doi.org/10.1016/j.ejim.2007.06.020

    Article  CAS  PubMed  Google Scholar 

  144. Ladani AP, Biswas A, Vaghasia N, Generalovich T (2015) Unusual presentation of listerial myocarditis and the diagnostic value of cardiac magnetic resonance. Tex Heart Inst J 42(3):255–258. https://doi.org/10.14503/THIJ-14-4204

    Article  PubMed  PubMed Central  Google Scholar 

  145. Uzoigwe C (2005) Campylobacter infections of the pericardium and myocardium. Clin Microbiol Infect 11(4):253–255. https://doi.org/10.1111/j.1469-0691.2004.01028.x

    Article  CAS  PubMed  Google Scholar 

  146. Alzand BS, Ilhan M, Heesen WF, Meeder JG (2010) Campylobacter jejuni: enterocolitis and myopericarditis. Int J Cardiol 144(1):e14–e16. https://doi.org/10.1016/j.ijcard.2008.12.101

    Article  CAS  PubMed  Google Scholar 

  147. Kaakoush NO, Castano-Rodriguez N, Mitchell HM, Man SM (2015) Global epidemiology of campylobacter infection. Clin Microbiol Rev 28(3):687–720. https://doi.org/10.1128/CMR.00006-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Suehiro W, Nishio R, Noiri JI, Takeshige R, Konishi H, Matsuzoe H et al (2023) Acute myocarditis secondary to Campylobacter jejuni enteritis: a case report. J Cardiol Cases 28(5):185–188. https://doi.org/10.1016/j.jccase.2023.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mohamed Jiffry MZ, Okam NA, Vargas J, Adekunle FA, Pagan SC, Khowaja F, Ahmed-Khan MA (2023) Myocarditis as a complication of Campylobacter jejuni-associated enterocolitis: a report of two cases. Cureus 15(3):e36171. https://doi.org/10.7759/cureus.36171

    Article  PubMed  PubMed Central  Google Scholar 

  150. Stout JE, Yu VL (1997) Legionellosis. N Engl J Med 337(10):682–687. https://doi.org/10.1056/NEJM199709043371006

    Article  CAS  PubMed  Google Scholar 

  151. Briceno DF, Fernando RR, Nathan S, Loyalka P, Kar B, Gregoric ID (2015) TandemHeart as a bridge to recovery in legionella myocarditis. Tex Heart Inst J 42(4):357–361. https://doi.org/10.14503/THIJ-14-4131

    Article  PubMed  PubMed Central  Google Scholar 

  152. Jarrah A, Mansour M, Alnasarat A, Abdelrahman A, Damlakhy A, Eltawansy S (2023) Disseminated legionella associated with myocarditis in an otherwise immunocompetent host: a case report and review of the literature. Cureus 15(6):e40529. https://doi.org/10.7759/cureus.40529

    Article  PubMed  PubMed Central  Google Scholar 

  153. Spighi L, Coiro S, Morroni S, Benedetti M, Savino K, Ambrosio G, Cavallini C (2021) Acute myocarditis associated with legionella infection: usefulness of layer-specific two-dimensional longitudinal speckle-tracking analysis. J Cardiovasc Echogr 31(2):98–101. https://doi.org/10.4103/jcecho.jcecho_130_20

    Article  PubMed  PubMed Central  Google Scholar 

  154. Franc KA, Krecek RC, Hasler BN, Arenas-Gamboa AM (2018) Brucellosis remains a neglected disease in the developing world: a call for interdisciplinary action. BMC Public Health 18(1):125. https://doi.org/10.1186/s12889-017-5016-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Colmenero JD, Reguera JM, Martos F, Sanchez-De-Mora D, Delgado M, Causse M et al (1996) Complications associated with Brucella melitensis infection: a study of 530 cases. Medicine 75(4):195–211. https://doi.org/10.1097/00005792-199607000-00003

    Article  CAS  PubMed  Google Scholar 

  156. He Y, Wei C, Yun S, Wei J, Pu Z, Dai P (2023) A case report of rare complication of brucellosis infection: myocarditis and pneumonitis. J Int Med Res 51(3):3000605231163818. https://doi.org/10.1177/03000605231163818

    Article  PubMed  Google Scholar 

  157. Gatselis NK, Makaritsis KP, Gabranis I, Stefos A, Karanikas K, Dalekos GN (2011) Unusual cardiovascular complications of brucellosis presenting in two men: two case reports and a review of the literature. J Med Case Rep. https://doi.org/10.1186/1752-1947-5-22

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bhatty S, Kumar P, Javed B, Zafar A (2020) A rare presentation of brucellosis as myocarditis. Cureus 12(11):e11345. https://doi.org/10.7759/cureus.11345

    Article  PubMed  PubMed Central  Google Scholar 

  159. Wendt S, Lippmann N, Fahnert J, Rodloff AC, Lubbert C (2018) Brucella related myocarditis. Int J Infect Dis 66:126–127. https://doi.org/10.1016/j.ijid.2017.11.014

    Article  PubMed  Google Scholar 

  160. Lagadinou M, Mplani V, Velissaris D, Davlouros P, Marangos M (2019) Myocarditis caused by Brucella melitensis in the absence of endocarditis: case report and review of the literature. Case Rep Med 2019:3701016. https://doi.org/10.1155/2019/3701016

    Article  PubMed  PubMed Central  Google Scholar 

  161. Rosenstein NE, Perkins BA (2000) Update on haemophilus influenzae serotype b and meningococcal vaccines. Pediatr Clin N Am 47(2):337–352. https://doi.org/10.1016/s0031-3955(05)70210-8

    Article  CAS  Google Scholar 

  162. Gawalkar AA, Tale S, Chhabria BA, Bhalla A (2017) Myocarditis and purpura fulminans in meningococcaemia. QJM Int J Med 110(11):755–756. https://doi.org/10.1093/qjmed/hcx144

    Article  CAS  Google Scholar 

  163. Thomson RJ, Singh A, Knight DS, Buckley J, Lamb LE, Captur G et al (2021) Anakinra treats fulminant myocarditis from Neisseria meningitides septicaemia and haemophagocytic lymphohistiocytosis: a case report. Eur Heart J Case Rep. https://doi.org/10.1093/ehjcr/ytab201

    Article  PubMed  PubMed Central  Google Scholar 

  164. Akcay N, Kihtir HS, Ozcelik G, Barlas UK, Petmezci MT, Sevketoglu E (2022) Immunoadsorption therapy for a meningococcemia patient with myocarditis, adrenal hemorrhage, and purpura fulminans: a case report. Braz J Anesthesiol (Engl Ed) 72(6):819–822. https://doi.org/10.1016/j.bjane.2021.06.021

    Article  Google Scholar 

  165. Qin H, Jiang W (2019) Myocarditis in fulminant meningococcemia. Intensive Care Med 45(11):1655–1656. https://doi.org/10.1007/s00134-019-05656-4

    Article  PubMed  Google Scholar 

  166. Neveling U, Kaschula ROC (1993) Fatal meningococcal disease in childhood: an autopsy study of 86 cases. Ann Trop Paediatr 13(2):147–152. https://doi.org/10.1080/02724936.1993.11747638

    Article  CAS  PubMed  Google Scholar 

  167. Garcia NS, Castelo JS, Ramos V, Rezende GSM, Pereira FEL (1999) Frequency of myocarditis in cases of fatal meningococcal infection in children: observations on 31 cases studied at autopsy. Rev Soc Bras Med Trop 32(5):517–522. https://doi.org/10.1590/s0037-86821999000500008

    Article  CAS  PubMed  Google Scholar 

  168. Fraser HS, Figueroa JP, James OBOL, Liburd AL, Nicholson GA, Whitbourne F, Alleyne GAO (1974) Gonococcaemia with arthritis, dermatitis and myocarditis. Postgrad Med J 50(590):759–764. https://doi.org/10.1136/pgmj.50.590.759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kraus SJ (1972) Complications of gonococcal infection. Med Clin N Am 56(5):1115–1125. https://doi.org/10.1016/s0025-7125(16)32337-9

    Article  CAS  PubMed  Google Scholar 

  170. Bunker D, Kerr LD (2015) Acute myopericarditis likely secondary to disseminated gonococcal infection. Case Rep Infect Dis 2015:1–4. https://doi.org/10.1155/2015/385126

    Article  Google Scholar 

  171. Gordon MA (2008) Salmonella infections in immunocompromised adults. J Infect 56(6):413–422. https://doi.org/10.1016/j.jinf.2008.03.012

    Article  PubMed  Google Scholar 

  172. Sánchez-Vargas FM, Abu-El-Haija MA, Gómez-Duarte OG (2011) Salmonella infections: an update on epidemiology, management, and prevention. Travel Med Infect Dis 9(6):263–277. https://doi.org/10.1016/j.tmaid.2011.11.001

    Article  PubMed  Google Scholar 

  173. Villablanca P (2015) Salmonella berta myocarditis: Case report and systematic review of non-typhoid Salmonella myocarditis. World J Cardiol. https://doi.org/10.4330/wjc.v7.i12.931

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sundbom P, Suutari A-M, Abdulhadi K, Broda W, Csegedi M (2018) Salmonella enteritidis causing myocarditis in a previously healthy 22-year-old male. Oxf Med Case Rep. https://doi.org/10.1093/omcr/omy106

    Article  Google Scholar 

  175. Vigneswaran N, Cheong E (2023) Non-typhoidal Salmonella myocarditis: a disease manifestation not to be missed. Med J Aust 218(5):212–213. https://doi.org/10.5694/mja2.51859

    Article  PubMed  Google Scholar 

  176. Waites KB, Talkington DF (2004) Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 17(4):697–728. https://doi.org/10.1128/CMR.17.4.697-728.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Meseguer MA, Perez-Molina JA, Fernandez-Bustamante J, Gomez R, Martos I, Quero MC (1996) Mycoplasma pneumoniae pericarditis and cardiac tamponade in a ten-year-old girl. Pediatr Infect Dis J 15(9):829–831. https://doi.org/10.1097/00006454-199609000-00019

    Article  CAS  PubMed  Google Scholar 

  178. Hartleif S, Wiegand G, Kumpf M, Eberhard M, Hofbeck M (2013) Severe chest pain caused by Mycoplasma myocarditis in an adolescent patient. Klin Padiatr 225(7):423–425. https://doi.org/10.1055/s-0033-1361130

    Article  CAS  PubMed  Google Scholar 

  179. Karjalainen J (1990) A loud third heart sound and asymptomatic myocarditis during Mycoplasma pneumoniae infection. Eur Heart J 11(10):960–963. https://doi.org/10.1093/oxfordjournals.eurheartj.a059620

    Article  CAS  PubMed  Google Scholar 

  180. Kulkarni A (2011) Childhood rickettsiosis. Indian J Pediatr 78(1):81–87. https://doi.org/10.1007/s12098-010-0255-2

    Article  PubMed  Google Scholar 

  181. Ciabatti M, Pieroni M, Felici M, Bolognese L (2021) Multimodality imaging assessment and follow-up in a case of rickettsial myocarditis: echocardiographic and cardiac magnetic resonance features. Circ Cardiovasc Imaging 14(12):1151–1154. https://doi.org/10.1161/CIRCIMAGING.121.013481

    Article  PubMed  Google Scholar 

  182. Colomba C, Siracusa L, Trizzino M, Gioe C, Giammanco A, Cascio A (2016) Myocarditis in Mediterranean spotted fever: a case report and a review of the literature. JMM Case Rep 3(4):e005039. https://doi.org/10.1099/jmmcr.0.005039

    Article  PubMed  PubMed Central  Google Scholar 

  183. Yang X, Liu Z, Liu X, Li Q, Huang H, Li R, He M (2023) Chlamydia psittaci pneumonia-induced myocarditis: a case report. Infect Drug Resist 16:4259–4264. https://doi.org/10.2147/IDR.S417241

    Article  PubMed  PubMed Central  Google Scholar 

  184. Saikku P (1996) Chlamydia pneumoniae and cardiovascular diseases. Clin Microbiol Infect 1(Suppl 1):S19–S22. https://doi.org/10.1111/j.1469-0691.1996.tb00586.x

    Article  PubMed  Google Scholar 

  185. Odeh M, Oliven A (1992) Chlamydial infections of the heart. Eur J Clin Microbiol Infect Dis 11(10):885–893. https://doi.org/10.1007/BF01962368

    Article  CAS  PubMed  Google Scholar 

  186. Shen RV, McCarthy CA (2022) Cardiac manifestations of lyme disease. Infect Dis Clin N Am 36(3):553–561. https://doi.org/10.1016/j.idc.2022.03.001

    Article  Google Scholar 

  187. McAlister HF, Klementowicz PT, Andrews C, Fisher JD, Feld M, Furman S (1989) Lyme carditis: an important cause of reversible heart block. Ann Intern Med 110(5):339–345. https://doi.org/10.7326/0003-4819-110-5-339

    Article  CAS  PubMed  Google Scholar 

  188. Haddad FA, Nadelman RB (2003) Lyme disease and the heart. Front Biosci 8:s769–s782. https://doi.org/10.2741/1065

    Article  PubMed  Google Scholar 

  189. Costello JM, Alexander ME, Greco KM, Perez-Atayde AR, Laussen PC (2009) Lyme carditis in children: presentation, predictive factors, and clinical course. Pediatrics 123(5):e835–e841. https://doi.org/10.1542/peds.2008-3058

    Article  PubMed  Google Scholar 

  190. Shen RV, McCarthy CA, Smith RP (2021) Lyme carditis in hospitalized children and adults, a case series. Open Forum Infect Dis 8(7):ofab140. https://doi.org/10.1093/ofid/ofab140

    Article  PubMed  PubMed Central  Google Scholar 

  191. Morris SA, Tanowitz HB, Wittner M, Bilezikian JP (1990) Pathophysiological insights into the cardiomyopathy of Chagas’ disease. Circulation 82(6):1900–1909. https://doi.org/10.1161/01.cir.82.6.1900

    Article  CAS  PubMed  Google Scholar 

  192. Henao-Martinez AF, Schwartz DA, Yang IV (2012) Chagasic cardiomyopathy, from acute to chronic: Is this mediated by host susceptibility factors? Trans R Soc Trop Med Hyg 106(9):521–527. https://doi.org/10.1016/j.trstmh.2012.06.006

    Article  PubMed  Google Scholar 

  193. Echavarria NG, Echeverria LE, Stewart M, Gallego C, Saldarriaga C (2021) Chagas disease: chronic chagas cardiomyopathy. Curr Probl Cardiol 46(3):100507. https://doi.org/10.1016/j.cpcardiol.2019.100507

    Article  PubMed  Google Scholar 

  194. Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375(9723):1388–1402. https://doi.org/10.1016/S0140-6736(10)60061-X

    Article  PubMed  Google Scholar 

  195. Tanowitz HB, Machado FS, Spray DC, Friedman JM, Weiss OS, Lora JN et al (2015) Developments in the management of Chagas cardiomyopathy. Expert Rev Cardiovasc Ther 13(12):1393–1409. https://doi.org/10.1586/14779072.2015.1103648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Soares MB, de Lima RS, Rocha LL, Vasconcelos JF, Rogatto SR, dos Santos RR et al (2010) Gene expression changes associated with myocarditis and fibrosis in hearts of mice with chronic chagasic cardiomyopathy. J Infect Dis 202(3):416–426. https://doi.org/10.1086/653481

    Article  CAS  PubMed  Google Scholar 

  197. Andrade ZA (1999) Immunopathology of Chagas disease. Mem Inst Oswaldo Cruz 94(Suppl):171–180. https://doi.org/10.1590/s0074-02761999000700007

    Article  Google Scholar 

  198. Kirchhoff LV, Weiss LM, Wittner M, Tanowitz HB (2004) Parasitic diseases of the heart. Front Biosci 9:706–723. https://doi.org/10.2741/1255

    Article  PubMed  Google Scholar 

  199. Montoya JG, Liesenfeld O (2004) Toxoplasmosis. Lancet 363(9425):1965–1976. https://doi.org/10.1016/S0140-6736(04)16412-X

    Article  CAS  PubMed  Google Scholar 

  200. Hofman P, Drici MD, Gibelin P, Michiels JF, Thyss A (1993) Prevalence of toxoplasma myocarditis in patients with the acquired immunodeficiency syndrome. Heart 70(4):376–381. https://doi.org/10.1136/hrt.70.4.376

    Article  CAS  Google Scholar 

  201. Chandenier J, Jarry G, Nassif D, Douadi Y, Paris L, Thulliez P et al (2000) Congestive heart failure and myocarditis after seroconversion for toxoplasmosis in two immunocompetent patients. Eur J Clin Microbiol Infect Dis 19(5):375–379. https://doi.org/10.1007/s100960050498

    Article  CAS  PubMed  Google Scholar 

  202. Ashley EA, Pyae Phyo A, Woodrow CJ (2018) Malaria. Lancet 391(10130):1608–1621. https://doi.org/10.1016/S0140-6736(18)30324-6

    Article  PubMed  Google Scholar 

  203. Holm AE, Gomes LC, Marinho CRF, Silvestre OM, Vestergaard LS, Biering-Sorensen T, Brainin P (2021) Prevalence of cardiovascular complications in malaria: a systematic review and meta-analysis. Am J Trop Med Hyg 104(5):1643–1650. https://doi.org/10.4269/ajtmh.20-1414

    Article  PubMed  PubMed Central  Google Scholar 

  204. Li E, Stanley SL (1996) Protozoa. Gastroenterol Clin N Am 25(3):471–492. https://doi.org/10.1016/s0889-8553(05)70259-4

    Article  CAS  Google Scholar 

  205. Hidron A, Vogenthaler N, Santos-Preciado JI, Rodriguez-Morales AJ, Franco-Paredes C, Rassi A (2010) Cardiac involvement with parasitic infections. Clin Microbiol Rev 23(2):324–349. https://doi.org/10.1128/cmr.00054-09

    Article  PubMed  PubMed Central  Google Scholar 

  206. Shamsuzzaman SM, Hashiguchi Y (2002) Thoracic amebiasis. Clin Chest Med 23(2):479–492. https://doi.org/10.1016/s0272-5231(01)00008-9

    Article  CAS  PubMed  Google Scholar 

  207. Nunes MCP, Guimarães Júnior MH, Diamantino AC, Gelape CL, Ferrari TCA (2017) Cardiac manifestations of parasitic diseases. Heart 103(9):651–658. https://doi.org/10.1136/heartjnl-2016-309870

    Article  PubMed  Google Scholar 

  208. Keleş Alp E, Alp H, Keçeli M (2020) Myocarditis associated with enteric amebiasis in an adolescent. World J Pediatric Congenit Heart Surg 11(5):658–660. https://doi.org/10.1177/2150135120930001

    Article  Google Scholar 

  209. Mishra A, Ete T, Fanai V, Malviya A (2023) A review on cardiac manifestation of parasitic infection. Trop Parasitol 13(1):8–15. https://doi.org/10.4103/tp.tp_45_21

    Article  PubMed  PubMed Central  Google Scholar 

  210. Nosanchuk JD (2002) Fungal myocarditis. Front Biosci 7:1423–1438. https://doi.org/10.2741/A850

    Article  Google Scholar 

  211. Van Kirk JE, Simon AB, Armstrong WR (1974) Candida myocarditis causing complete atrioventricular block. JAMA 227(8):931–933. https://doi.org/10.1001/jama.227.8.931

    Article  PubMed  Google Scholar 

  212. Ihde DC, Roberts WC, Marr KC, Brereton HD, McGuire WP, Levine AS, Young RC (1978) Cardiac candidiasis in cancer patients. Cancer 41(6):2364–2371. https://doi.org/10.1002/1097-0142(197806)41:6%3c2364::aid-cncr2820410640%3e3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  213. Honjo S, Masui K, Komatsu A, Fujita A (2018) Candida albicans myocarditis and renal abscess. Intern Med 57(9):1333–1334. https://doi.org/10.2169/internalmedicine.9786-17

    Article  PubMed  Google Scholar 

  214. Denning DW (1998) Invasive aspergillosis. Clin Infect Dis 26(4):781–803. https://doi.org/10.1086/513943

    Article  CAS  PubMed  Google Scholar 

  215. Sergi C, Weitz J, Hofmann WJ, Sinn P, Eckart A, Otto G et al (1996) Aspergillus endocarditis, myocarditis and pericarditis complicating necrotizing fasciitis: case report and subject review. Virchows Arch 429(2–3):177–180. https://doi.org/10.1007/BF00192441

    Article  CAS  PubMed  Google Scholar 

  216. Cox JN, di Dio F, Pizzolato GP, Lerch R, Pochon N (1990) Aspergillus endocarditis and myocarditis in a patient with the acquired immunodeficiency syndrome (AIDS): a review of the literature. Virchows Arch A Pathol Anat Histopathol 417(3):255–259. https://doi.org/10.1007/BF01600142

    Article  CAS  PubMed  Google Scholar 

  217. Bullis SS, Krywanczyk A, Hale AJ (2019) Aspergillosis myocarditis in the immunocompromised host. IDCases 17:e00567. https://doi.org/10.1016/j.idcr.2019.e00567

    Article  PubMed  PubMed Central  Google Scholar 

  218. Mitchell TG, Perfect JR (1995) Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 8(4):515–548. https://doi.org/10.1128/CMR.8.4.515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Currie BP, Casadevall A (1994) Estimation of the prevalence of cryptococcal infection among patients infected with the human immunodeficiency virus in New York City. Clin Infect Dis 19(6):1029–1033. https://doi.org/10.1093/clinids/19.6.1029

    Article  CAS  PubMed  Google Scholar 

  220. Lafont A, Wolff M, Marche C, Clair B, Regnier B (1987) Overwhelming myocarditis due to Cryptococcus neoformans in an AIDS patient. Lancet 2(8568):1145–1146. https://doi.org/10.1016/s0140-6736(87)91567-4

    Article  CAS  PubMed  Google Scholar 

  221. Nagai T, Kawai C (1980) Experimental cryptococcal myocarditis. Res Exp Med 178(1):11–19. https://doi.org/10.1007/BF01856753

    Article  CAS  Google Scholar 

  222. Doughan A (2006) Disseminated histoplasmosis: case report and brief review. Travel Med Infect Dis 4(6):332–335. https://doi.org/10.1016/j.tmaid.2006.01.013

    Article  PubMed  Google Scholar 

  223. Riddell J, Kauffman CA, Smith JA, Assi M, Blue S, Buitrago MI et al (2014) Histoplasma capsulatum endocarditis. Medicine 93(5):186–193. https://doi.org/10.1097/md.0000000000000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Scott BL, Sherwin JI, Rehder KJ, Campbell MJ, Ozment CP (2018) Histoplasmosis myocarditis in an immunocompetent host after a recreational mud run. Pediatrics 141(Supplement_5):S462–S465. https://doi.org/10.1542/peds.2017-1074

    Article  PubMed  Google Scholar 

  225. Petrikkos G, Skiada A, Lortholary O, Roilides E, Walsh TJ, Kontoyiannis DP (2012) Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis 54(1):S23–S34

    Article  PubMed  Google Scholar 

  226. Suzuki Y, Kume H, Togano T, Ohto H (2017) Epidemiology of zygomycosis: analysis of national data from pathological autopsy cases in Japan. Med Mycol J 58(3):E89–E95. https://doi.org/10.3314/mmj.16-00028

    Article  PubMed  Google Scholar 

  227. Torres-Narbona M, Js G, Martínez-Alarcón J, Muñoz P, Gadea I (2007) Impact of zygomycosis on microbiology workload: a survey study in Spain. J Clin Microbiol 45(6):2051–2053. https://doi.org/10.1128/jcm.02473-06

    Article  PubMed  PubMed Central  Google Scholar 

  228. Fujisawa Y, Hara S, Zoshima T, Maekawa N, Inoue D, Sasaki M et al (2020) Fulminant myocarditis and pulmonary cavity lesion induced by disseminated mucormycosis in a chronic hemodialysis patient: report of an autopsied case. Pathol Int 70(8):557–562. https://doi.org/10.1111/pin.12943

    Article  PubMed  Google Scholar 

  229. Basti A (2004) Fatal fulminant myocarditis caused by disseminated mucormycosis. Heart 90(10):e60. https://doi.org/10.1136/hrt.2004.038273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

For their guidance and advice, we are grateful to Dr Jia Wang, Dr Jianyong Du and Dr Wentao Sun. The elements in figure come from bioicons.com.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

ZY and ML collected research articles wrote this manuscript; SZ supervised this work and revised this manuscript; and ZY conceived and designed this work, analyzed the data, and revised this manuscript.

Corresponding author

Correspondence to Zongjie Yao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Liang, M. & Zhu, S. Infectious factors in myocarditis: a comprehensive review of common and rare pathogens. Egypt Heart J 76, 64 (2024). https://doi.org/10.1186/s43044-024-00493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s43044-024-00493-3

Keywords