Dassanayaka S, Jones SP (2015) Recent developments in heart failure. Circ Res 117(7):e58–e63
CAS
PubMed
PubMed Central
Google Scholar
Skrzynia C, Berg JS, Willis MS, Jensen BC (2015) Genetics and heart failure: a concise guide for the clinician. Curr Cardiol Rev 11(1):10–17
PubMed
PubMed Central
Google Scholar
Ziaeian B, Fonarow GC (2016) Epidemiology and etiology of heart failure. Nat Rev Cardiol 13(6):368–378
PubMed
PubMed Central
Google Scholar
Ohtani T, Mohammed SF, Yamamoto K, Dunlay SM, Weston SA, Sakata Y et al (2012) Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. Eur Heart J 33(14):1742–1749
PubMed
PubMed Central
Google Scholar
Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200
PubMed
Google Scholar
Czepluch FS, Wollnik B, Hasenfuß G (2018) Genetic determinants of heart failure: facts and numbers. ESC heart failure 5(3):211–217
PubMed
PubMed Central
Google Scholar
Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93(9):1137–1146
PubMed
PubMed Central
Google Scholar
Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al (2016) Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133(4):e38–e360
PubMed
Google Scholar
Ceia F, Fonseca C, Mota T, Morais H, Matias F, de Sousa A et al (2002) Prevalence of chronic heart failure in Southwestern Europe: the EPICA study. Eur J Heart Fail 4(4):531–539
PubMed
Google Scholar
Gomez-Soto FM, Andrey JL, Garcia-Egido AA, Escobar MA, Romero SP, Garcia-Arjona R et al (2011) Incidence and mortality of heart failure: a community-based study. Int J Cardiol 151(1):40–45
PubMed
Google Scholar
Ohlmeier C, Mikolajczyk R, Frick J, Prütz F, Haverkamp W, Garbe E (2015) Incidence, prevalence and 1-year all-cause mortality of heart failure in Germany: a study based on electronic healthcare data of more than six million persons. Clin Res Cardiol 104(8):688–696
PubMed
Google Scholar
Zarrinkoub R, Wettermark B, Wändell P, Mejhert M, Szulkin R, Ljunggren G, Kahan T (2013) The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. Eur J Heart Fail 15(9):995–1002
PubMed
Google Scholar
Buja A, Solinas G, Visca M, Federico B, Gini R, Baldo V et al (2016) Prevalence of heart failure and adherence to process indicators: which socio-demographic determinants are involved? Int J Environ Res Public Health 13(2):238
PubMed
PubMed Central
Google Scholar
Sakata Y, Shimokawa H (2013) Epidemiology of heart failure in Asia. Circ J 77:2209–2217
PubMed
Google Scholar
Hu SS, Kong LZ, Gao RL, Zhu ML, Wen WANG, Wang YJ et al (2012) Outline of the report on cardiovascular disease in China, 2010. Biomed Environ Sci 25(3):251–256
PubMed
Google Scholar
Yang YN, Ma YT, Liu F, Huang D, Li XM, Huang Y et al (2010) Incidence and distributing feature of chronic heart failure in adult population of Xinjiang. Zhonghua Xin Xue Guan Bing Za Zhi 38(5):460–464
PubMed
Google Scholar
Okamoto H, Kitabatake A (2003) The epidemiology of heart failure in Japan. Nihon rinsho. Jpn J Clin Med 61(5):709–714
Google Scholar
Okura Y, Ramadan MM, Ohno Y, Mitsuma W, Tanaka K, Ito M et al (2008) Impending epidemic future projection of heart failure in Japan to the year 2055. Circ J 72(3):489–491
PubMed
Google Scholar
Konishi M, Ishida J, Springer J, von Haehling S, Akashi YJ, Shimokawa H, Anker SD (2016) Heart failure epidemiology and novel treatments in Japan: facts and numbers. ESC Heart Fail 3:145–151
PubMed
PubMed Central
Google Scholar
Huffman MD, Prabhakaran D (2010) Heart failure: epidemiology and prevention in India. Natl Med J India 23(5):283
PubMed
PubMed Central
Google Scholar
Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S et al (2014) Heart failure: preventing disease and death worldwide. ESC Heart Fail 1(1):4–25
PubMed
Google Scholar
Lam CS (2015) Heart failure in Southeast Asia: facts and numbers. ESC Heart Fail 2:46–49
PubMed
PubMed Central
Google Scholar
Ciapponi A, Alcaraz A, Calderon M, Matta MG, Chaparro M, Soto N, Bardach A (2016) Burden of heart failure in Latin America: a systematic review and meta-analysis. Revista Española de Cardiología (English Edition) 69(11):1051–1060
Google Scholar
Sahle BW, Owen AJ, Mutowo MP, Krum H, Reid CM (2016) Prevalence of heart failure in Australia: a systematic review. BMC Cardiovasc Disord 16(1):1–6
Google Scholar
Makubi A, Hage C, Lwakatare J, Kisenge P, Makani J, Rydén L, Lund LH (2014) Contemporary aetiology, clinical characteristics and prognosis of adults with heart failure observed in a tertiary hospital in Tanzania: the prospective Tanzania Heart Failure (TaHeF) study. Heart 100(16):1235–1241
PubMed
Google Scholar
Ntusi NB, Mayosi BM (2009) Epidemiology of heart failure in sub-Saharan Africa. Expert Rev Cardiovasc Ther 7(2):169–180
PubMed
Google Scholar
Brouwers FP, de Boer RA, van der Harst P, Voors AA, Gansevoort RT, Bakker SJ et al (2013) Incidence and epidemiology of new-onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur Heart J 34(19):1424–1431
CAS
PubMed
Google Scholar
Bragazzi NL, Zhong W, Shu J, Abu Much A, Lotan D, Grupper A et al (2021) Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur J Prev Cardiol 28:1682–1690
PubMed
Google Scholar
Komanduri S, Jadhao Y, Guduru SS, Cheriyath P, Wert Y (2017) Prevalence and risk factors of heart failure in the USA: NHANES 2013–2014 epidemiological follow-up study. J Community Hosp Intern Med Perspect 7(1):15–20
PubMed
PubMed Central
Google Scholar
van der Ende MY, Hartman MH, Hagemeijer Y, Meems LM, de Vries HS, Stolk RP et al (2017) The LifeLines Cohort Study: prevalence and treatment of cardiovascular disease and risk factors. Int J Cardiol 228:495–500
PubMed
Google Scholar
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 42(36):3599–3726
CAS
PubMed
Google Scholar
Ledwidge M, Gallagher J, Conlon C, Tallon E, O’Connell E, Dawkins I et al (2013) Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA 310(1):66–74
CAS
PubMed
Google Scholar
Huelsmann M, Neuhold S, Resl M, Strunk G, Brath H, Francesconi C et al (2013) PONTIAC (NT-proBNP Selected PreventiOn of cardiac events in a populaTion of dIabetic patients without A history of Cardiac disease) A Prospective Randomized Controlled Trial. J Am Coll Cardiol 62(15):1365–1372
PubMed
Google Scholar
Yusuf S, Rangarajan S, Teo K, Islam S, Li W, Liu L et al (2014) Cardiovascular risk and events in 17 low-, middle-, and high-income countries. N Engl J Med 371(9):818–827
CAS
PubMed
Google Scholar
Baldasseroni S, Opasich C, Gorini M, Lucci D, Marchionni N, Marini M et al (2002) Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J 143(3):398–405
PubMed
Google Scholar
Hawkins NM, Petrie MC, Jhund PS, Chalmers GW, Dunn FG, McMurray JJ (2009) Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur J Heart Fail 11(2):130–139
PubMed
PubMed Central
Google Scholar
Ziaeian B, Fonarow GC (2016) Epidemiology and aetiology of heart failure. Nat Rev Cardiol 13(6):368–378
PubMed
PubMed Central
Google Scholar
Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet 380(9859):2163–2196
Google Scholar
Zhao D, Liu J, Xie W, Qi Y (2015) Cardiovascular risk assessment: a global perspective. Nat Rev Cardiol 12(5):301
PubMed
Google Scholar
Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 113(14):1807–1816
PubMed
Google Scholar
Maron BJ, Thiene G (2011) Hurst’s hear. McGraw Hill Medical
Google Scholar
Lip GY, Gibbs CR, Beevers DG (2000) ABC of heart failure: aetiology. BMJ (Clin Res Ed) 320(7227):104–107
CAS
Google Scholar
Lee DS, Pencina MJ, Benjamin EJ, Wang TJ, Levy D, O’Donnell CJ et al (2006) Association of parental heart failure with risk of heart failure in offspring. N Engl J Med 355(2):138–147
CAS
PubMed
Google Scholar
Lindgren MP, Smith JG, Li X, Sundquist J, Sundquist K, Zöller B (2016) Sibling risk of hospitalization for heart failure—a nationwide study. Int J Cardiol 223:379–384
PubMed
Google Scholar
Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S et al (2006) Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296(15):1867–1876
CAS
PubMed
Google Scholar
Monserrat L, Hermida M, Bouzas B, Mosquera I, Mahon N, Peteiro J et al (2002) Familial dilated cardiomyopathy in patients transplanted for idiopathic dilated cardiomyopathy. Rev Esp Cardiol 55(7):725–732
PubMed
Google Scholar
Jacoby D, McKenna WJ (2012) Genetics of inherited cardiomyopathy. Eur Heart J 33(3):296–304
CAS
PubMed
Google Scholar
Wexler RK, Elton T, Pleister A, Feldman D (2009) Cardiomyopathy: an overview. Am Fam Phys 79(9):778–784
Google Scholar
Sisakian H (2014) Cardiomyopathies: evolution of pathogenesis concepts and potential for new therapies. World J Cardiol 6(6):478–494
PubMed
PubMed Central
Google Scholar
Davies MJ (2000) The cardiomyopathies: an overview. Heart (Br Cardiac Soc) 83(4):469–474. https://doi.org/10.1136/heart.83.4.469
Article
CAS
Google Scholar
Arbustini E, Narula N, Tavazzi L, Serio A, Grasso M, Favalli V et al (2014) The MOGE (S) classification of cardiomyopathy for clinicians. J Am Coll Cardiol 64(3):304–318
PubMed
Google Scholar
Weintraub RG, Semsarian C, Macdonald P (2017) Dilated cardiomyopathy. Lancet 390(10092):400–414
CAS
PubMed
Google Scholar
Codd MB, Sugrue DD, Gersh BJ, Melton LJ III (1989) Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation 80(3):564–572
CAS
PubMed
Google Scholar
Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL et al (2018) Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 20(9):899–909
PubMed
Google Scholar
Sen-Chowdhry S, Syrris P, Prasad SK, Hughes SE, Merrifield R, Ward D et al (2008) Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol 52(25):2175–2187
PubMed
Google Scholar
Hershberger RE, Cowan J, Morales A, Siegfried JD (2009) Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Heart Fail 2(3):253–261
PubMed
PubMed Central
Google Scholar
Posafalvi A, Herkert JC, Sinke RJ, Van Den Berg MP, Mogensen J, Jongbloed JD, Van Tintelen JP (2013) Clinical utility gene card for: dilated cardiomyopathy (CMD). Eur J Hum Genet 21(10):1185–1185
Google Scholar
Callis TE, Jensen BC, Weck KE, Willis MS (2010) Evolving molecular diagnostics for familial cardiomyopathies: at the heart of it all. Expert Rev Mol Diagn 10(3):329–351
CAS
PubMed
PubMed Central
Google Scholar
Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, Seidman CE (2002) Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 105(4):446–451
CAS
PubMed
Google Scholar
Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287(10):1308–1320
PubMed
Google Scholar
Cirino AL, Ho C (2016) Hypertrophic cardiomyopathy overview. 2008 Aug 5 [updated 2014 Jan 16]. GeneReviews® [Internet]. University of Washington
Pinto YM, Wilde AA, Van Rijsingen IA, Christiaans I, Deprez RHL, Elliott PM (2011) Clinical utility gene card for: hypertrophic cardiomyopathy (type 1–14). Eur J Hum Genet 19(8):3–4
Google Scholar
Gallego-Delgado M, Delgado JF, Brossa-Loidi V, Palomo J, Marzoa-Rivas R, Perez-Villa F et al (2016) Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J Am Coll Cardiol 67(25):3021–3023
PubMed
Google Scholar
Muchtar E, Blauwet LA, Gertz MA (2017) Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121(7):819–837
CAS
PubMed
Google Scholar
Pereira NL, Grogan M, Dec GW (2018) Spectrum of restrictive and infiltrative cardiomyopathies: part 2 of a 2-part series. J Am Coll Cardiol 71(10):1149–1166
PubMed
Google Scholar
Sliwa K, Damasceno A, Mayosi BM (2005) Epidemiology and etiology of cardiomyopathy in Africa. Circulation 112(23):3577–3583
PubMed
Google Scholar
Mocumbi AO, Falase AO (2013) Recent advances in the epidemiology, diagnosis and treatment of endomyocardial fibrosis in Africa. Heart 99(20):1481–1487
PubMed
Google Scholar
Elasfar AA, Alhabeeb W, Elasfar S (2020) Heart failure in the middle east arab countries: current and future perspectives. J Saudi Heart Assoc 32(2):236
PubMed
PubMed Central
Google Scholar
Xu Q, Dewey S, Nguyen S, Gomes AV (2010) Malignant and benign mutations in familial cardiomyopathies: insights into mutations linked to complex cardiovascular phenotypes. J Mol Cell Cardiol 48(5):899–909
CAS
PubMed
Google Scholar
Precone V, Krasi G, Guerri G, Madureri A, Piazzani M, Michelini S, Barati S, Maniscalchi T, Bressan S, Bertelli M (2019) Cardiomyopathies. Acta Bio-Med Atenei Parm 90(10-S):32–43
CAS
Google Scholar
Towbin JA (2014) Inherited cardiomyopathies. Circ J 78:2347–2356
CAS
PubMed
PubMed Central
Google Scholar
Falase AO, Ogah OS (2012) Cardiomyopathies and myocardial disorders in Africa: present status and the way forward. Cardiovasc J Afr 23(10):552
CAS
PubMed
PubMed Central
Google Scholar
Peters S (2006) Advances in the diagnostic management of arrhythmogenic right ventricular dysplasia—cardiomyopathy. Int J Cardiol 113(1):4–11
PubMed
Google Scholar
Peters S, Trümmel M, Meyners W (2004) Prevalence of right ventricular dysplasia-cardiomyopathy in a non-referral hospital. Int J Cardiol 97(3):499–501
PubMed
Google Scholar
Protonotarios A, Anastasakis A, Panagiotakos DB, Antoniades L, Syrris P, Vouliotis A et al (2016) Arrhythmic risk assessment in genotyped families with arrhythmogenic right ventricular cardiomyopathy. Europace 18(4):610–616
PubMed
Google Scholar
Poloni G, De Bortoli M, Calore M, Rampazzo A, Lorenzon A (2016) Arrhythmogenic right ventricular cardiomyopathy: molecular genetics into clinical practice in the era of next-generation sequencing. J Cardiovasc Med 17(6):399–407
CAS
Google Scholar
McKenna WJ, Thiene G, Nava A, Fontaliran F, Blomstrom-Lundqvist C, Fontaine G, Camerini F (1994) Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the working group myocardial and pericardial disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J 71(3):215
CAS
PubMed
PubMed Central
Google Scholar
Corrado D, Link MS, Calkins H (2017) Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med 376(1):61–72
CAS
PubMed
Google Scholar
Van Der Smagt JJ, Van Der Zwaag PA, Van Tintelen JP, Cox MG, Wilde AA, Van Langen IM et al (2012) Clinical and genetic characterization of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy caused by a plakophilin-2 splice mutation. Cardiology 123(3):181–189
PubMed
Google Scholar
Schulze-Bahr E, Klaassen S, Abdul-Khaliq H, Schunkert H (2015) Molecular diagnostics of cardiovascular diseases. Expert consensus statement by the German Cardiac Society (DGK) and the German Society of Pediatric Cardiology (DGPK). Cardiology 9:213–243
CAS
Google Scholar
Pinamonti B, Brun F, Mestroni L, Sinagra G (2014) Arrhythmogenic right ventricular cardiomyopathy: from genetics to diagnostic and therapeutic challenges. World J Cardiol 6(12):1234
PubMed
PubMed Central
Google Scholar
Van Rijsingen IA, Arbustini E, Elliott PM, Mogensen J, Hermans-van Ast JF, Van Der Kooi AJ et al (2012) Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers: a European cohort study. J Am Coll Cardiol 59(5):493–500
PubMed
Google Scholar
McNally EM, Barefield DY, Puckelwartz MJ (2015) The genetic landscape of cardiomyopathy and its role in heart failure. Cell Metab 21(2):174–182
CAS
PubMed
PubMed Central
Google Scholar
Epstein ND, Cohn GM, Cyran F, Fananapazir L (1992) Differences in clinical expression of hypertrophic cardiomyopathy associated with two distinct mutations in the beta-myosin heavy chain gene. A 908Leu––Val mutation and a 403Arg––Gln mutation. Circulation 86(2):345–352
CAS
PubMed
Google Scholar
Oldfors A (2007) Hereditary myosin myopathies. Neuromuscul Disord 17(5):355–367
PubMed
Google Scholar
Walsh R, Rutland C, Thomas R, Loughna S (2010) Cardiomyopathy: a systematic review of disease-causing mutations in myosin heavy chain 7 and their phenotypic manifestations. Cardiology 115(1):49–60
CAS
PubMed
Google Scholar
Perrot A, Schmidt-Traub H, Hoffmann B, Prager M, Bit-Avragim N, Rudenko RI et al (2005) Prevalence of cardiac beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Mol Med 83(6):468–477
CAS
PubMed
Google Scholar
Stockler S, Corvera S, Lambright D, Fogarty K, Nosova E, Leonard D et al (2014) Single point mutation in Rabenosyn-5 in a female with intractable seizures and evidence of defective endocytotic trafficking. Orphanet J Rare Dis 9(1):1–11
Google Scholar
Fan XP, Yang ZW, Feng XL, Yang FH, Xiao B, Liang Y (2011) Mutation analysis of beta myosin heavy chain gene in hypertrophic cardiomyopathy families. Zhonghua yi xue yi chuan xue za zhi= Zhonghua yixue yichuanxue zazhi= Chin J Med Genet 28(4):387–392
CAS
Google Scholar
Liu HT, Ji FF, Wei L, Zuo AJ, Gao YX, Qi L et al (2019) Screening of MYH7 gene mutation sites in hypertrophic cardiomyopathy and its significance. Chin Med J 132(23):2835
PubMed
PubMed Central
Google Scholar
Schmitt JP, Debold EP, Ahmad F, Armstrong A, Frederico A, Conner DA et al (2006) Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function. Proc Natl Acad Sci 103(39):14525–14530
CAS
PubMed
PubMed Central
Google Scholar
Bloemink M, Deacon J, Langer S, Vera C, Combs A, Leinwand L, Geeves MA (2014) The hypertrophic cardiomyopathy myosin mutation R453C alters ATP binding and hydrolysis of human cardiac β-myosin. J Biol Chem 289(8):5158–5167
CAS
PubMed
Google Scholar
Garcıa-Castro M, Reguero JR, Batalla A, Dıaz-Molina B, Gonzalez P, Alvarez V et al (2003) Hypertrophic cardiomyopathy: low frequency of mutations in the β-myosin heavy chain (MYH7) and cardiac troponin t (TNNT2) genes among Spanish patients. Clin Chem 49(8):1279–1285
PubMed
Google Scholar
Gomes AV, Barnes JA, Harada K, Potter JD (2004) Role of troponin T in disease. Mol Cell Biochem 263(1):115–129
CAS
PubMed
Google Scholar
Mogensen J, Kubo T, Duque M, Uribe W, Shaw A, Murphy R et al (2003) Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Investig 111(2):209–216
CAS
PubMed
PubMed Central
Google Scholar
Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg HP et al (1994) α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77(5):701–712
PubMed
Google Scholar
Townsend PJ, Farza H, Macgeoch C, Spurr NK, Wade R, Gahlmann R et al (1994) Human cardiac troponin T: identification of fetal isoforms and assignment of the TNNT2 locus to chromosome 1q. Genomics 21(2):311–316
CAS
PubMed
Google Scholar
Palm T, Graboski S, Hitchcock-DeGregori SE, Greenfield NJ (2001) Disease-causing mutations in cardiac troponin T: identification of a critical tropomyosin-binding region. Biophys J 81(5):2827–2837
CAS
PubMed
PubMed Central
Google Scholar
Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DY (2002) Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31(1):106–110
CAS
PubMed
Google Scholar
Chang AN, Parvatiyar MS, Potter JD (2008) Troponin and cardiomyopathy. Biochem Biophys Res Commun 369(1):74–81
CAS
PubMed
Google Scholar
Hershberger RE, Pinto JR, Parks SB, Kushner JD, Li D, Ludwigsen S et al (2009) Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy. Circ Cardiovasc Genet 2(4):306–313
CAS
PubMed
PubMed Central
Google Scholar
Li X, Wang H, Luo R, Gu H, Zhang C, Zhang Y et al (2013) TNNT2 gene polymorphisms are associated with susceptibility to idiopathic dilated cardiomyopathy in the Han Chinese population. BioMed Res Int 2013(2013):201372
PubMed
PubMed Central
Google Scholar
Mirza M, Marston S, Willott R, Ashley C, Mogensen J, McKenna W et al (2005) Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J Biol Chem 280(31):28498–28506
CAS
PubMed
Google Scholar
Villard E, Perret C, Gary F, Proust C, Dilanian G, Hengstenberg C et al (2011) A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J 32(9):1065–1076
CAS
PubMed
PubMed Central
Google Scholar
Kimura A (2011) Contribution of genetic factors to the pathogenesis of dilated cardiomyopathy-the cause of dilated cardiomyopathy: acquired or genetic? (Genetic-side). Circ J 75:1756–1765
CAS
PubMed
Google Scholar
Sadayappan S, Osinska H, Klevitsky R, Lorenz JN, Sargent M, Molkentin JD et al (2006) Cardiac myosin-binding protein C phosphorylation is cardioprotective. Proc Natl Acad Sci 103(45):16918–16923
CAS
PubMed
PubMed Central
Google Scholar
Gruen M, Gautel M (1999) Mutations in β-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C. J Mol Biol 286(3):933–949
CAS
PubMed
Google Scholar
Carrier L, Mearini G, Stathopoulou K, Cuello F (2015) Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene 573(2):188–197
CAS
PubMed
PubMed Central
Google Scholar
Dorsch LM, Schuldt M, Knežević D, Wiersma M, Kuster DW, van der Velden J, Brundel BJ (2019) Untying the knot: protein quality control in inherited cardiomyopathies. Pflügers Archiv-Eur J Physiol 471(5):795–806
CAS
Google Scholar
Fourey D, Care M, Siminovitch KA, Weissler-Snir A, Hindieh W, Chan RH et al (2017) Prevalence and clinical implication of double mutations in hypertrophic cardiomyopathy. Circ Cardiovasc Genet 10(2):e001685
CAS
PubMed
Google Scholar
Mohiddin SA, Begley DA, McLam E, Cardoso JP, Winkler JB, Sellers JR, Fananapazir L (2003) Utility of genetic screening in hypertrophic cardiomyopathy: prevalence and significance of novel and double (homozygous and heterozygous) β-myosin mutations. Genet Test 7(1):21–27
CAS
PubMed
Google Scholar
Maron BJ, Maron MS, Semsarian C (2012) Double or compound sarcomere mutations in hypertrophic cardiomyopathy: a potential link to sudden death in the absence of conventional risk factors. Heart Rhythm 9(1):57–63
PubMed
Google Scholar
Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG (1990) A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell 62(5):999–1006
CAS
PubMed
Google Scholar
Kissopoulou A, Trinks C, Green A, Karlsson JE, Jonasson J, Gunnarsson C (2018) Homozygous missense MYBPC3 Pro873His mutation associated with increased risk for heart failure development in hypertrophic cardiomyopathy. ESC Heart Fail 5(4):716–723
PubMed
PubMed Central
Google Scholar
Julien O, Mercier P, Allen CN, Fisette O, Ramos CH, Lagüe P et al (2011) Is there nascent structure in the intrinsically disordered region of troponin I? Proteins Struct Funct Bioinform 79(4):1240–1250
CAS
Google Scholar
Galinska A, Hatch V, Craig R, Murphy AM, Van Eyk JE, Wang CLA et al (2010) Novelty and significance. Circ Res 106(4):705–711
CAS
PubMed
Google Scholar
Li Y, Charles PYJ, Nan C, Pinto JR, Wang Y, Liang J et al (2010) Correcting diastolic dysfunction by Ca2+ desensitizing troponin in a transgenic mouse model of restrictive cardiomyopathy. J Mol Cell Cardiol 49(3):402–411
CAS
PubMed
PubMed Central
Google Scholar
Mogensen J, Hey T, Lambrecht S (2015) A systematic review of phenotypic features associated with cardiac troponin I mutations in hereditary cardiomyopathies. Can J Cardiol 31(11):1377–1385
PubMed
Google Scholar
van den Wijngaard A, Volders P, Van Tintelen JP, Jongbloed JD, Van Den Berg MP, Deprez RL et al (2011) Recurrent and founder mutations in the Netherlands: cardiac Troponin I (TNNI3) gene mutations as a cause of severe forms of hypertrophic and restrictive cardiomyopathy. Neth Hear J 19(7):344–351
Google Scholar
Lippi G, Targher G, Franchini M, Plebani M (2009) Genetic and biochemical heterogeneity of cardiac troponins: clinical and laboratory implications. Clin Chem Lab Med 47(10):1183–1194
CAS
PubMed
Google Scholar
England J, Granados-Riveron J, Polo-Parada L, Kuriakose D, Moore C, Brook JD et al (2017) Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects. J Mol Cell Cardiol 106:1–13
CAS
PubMed
PubMed Central
Google Scholar
Jagatheesan G, Rajan S, Ahmed RP, Petrashevskaya N, Boivin G, Arteaga GM et al (2010) Striated muscle tropomyosin isoforms differentially regulate cardiac performance and myofilament calcium sensitivity. J Muscle Res Cell Motil 31(3):227–239
CAS
PubMed
PubMed Central
Google Scholar
Dube S, Panebianco L, Matoq AA, Chionuma HN, Denz CR, Poiesz BJ, Dube DK (2014) Expression of TPM1, a novel sarcomeric isoform of the TPM1 gene, in mouse heart and skeletal muscle. Mol Biol Int 2014:1–9
Google Scholar
Wang J, Sanger JM, Kang S, Thurston H, Abbott LZ, Dube DK, Sanger JW (2007) Ectopic expression and dynamics of TPM1α and TPM1κ in myofibrils of avian myotubes. Cell Motil Cytoskelet 64(10):767–776
CAS
Google Scholar
Lohmeier-Vogel EM, Heeley DH (2016) Biochemical comparison of Tpm1. 1 (α) and Tpm2. 2 (β) tropomyosins from rabbit skeletal muscle. Biochemistry 55(9):1418–1427
CAS
PubMed
Google Scholar
Olson TM, Kishimoto NY, Whitby FG, Michels VV (2001) Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 33(4):723–732
CAS
PubMed
Google Scholar
Redwood C, Robinson P (2013) Alpha-tropomyosin mutations in inherited cardiomyopathies. J Muscle Res Cell Motil 34(3–4):285–294
CAS
PubMed
Google Scholar
Yao Q, Zhang W, Zhang T (2019) Association of single nucleotide polymorphisms in the 3′ UTR region of TPM1 gene with dilated cardiomyopathy: a case-control study. Medicine 98(44):e17710
CAS
PubMed
PubMed Central
Google Scholar
Lin F, Worman HJ (1993) Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem 268(22):16321–16326
CAS
PubMed
Google Scholar
Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114(24):4557–4565
CAS
PubMed
Google Scholar
Taylor MR, Fain PR, Sinagra G, Robinson ML, Robertson AD, Carniel E et al (2003) Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol 41(5):771–780
CAS
PubMed
Google Scholar
Parks SB, Kushner JD, Nauman D, Burgess D, Ludwigsen S, Peterson A et al (2008) Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J 156(1):161–169
CAS
PubMed
PubMed Central
Google Scholar
Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M et al (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction system disease. N Engl J Med 341(23):1715–1724
CAS
PubMed
Google Scholar
Perovanovic J, Dell’Orso S, Gnochi VF, Jaiswal JK, Sartorelli V, Vigouroux C et al (2016) Laminopathies disrupt epigenomic developmental programs and cell fate. Sci Transl Med 8(335):335ra58
PubMed
PubMed Central
Google Scholar
Markandeya YS, Tsubouchi T, Hacker TA, Wolff MR, Belardinelli L, Balijepalli RC (2016) Inhibition of late sodium current attenuates ionic arrhythmia mechanism in ventricular myocytes expressing LaminA-N195K mutation. Heart Rhythm 13(11):2228–2236
PubMed
Google Scholar
Gerbino A, Procino G, Svelto M, Carmosino M (2018) Role of lamin A/C gene mutations in the signaling defects leading to cardiomyopathies. Front Physiol 9:1356
PubMed
PubMed Central
Google Scholar
Chen SN, Lombardi R, Karmouch J, Tsai JY, Czernuszewicz G, Taylor MR et al (2019) DNA damage response/TP53 pathway is activated and contributes to the pathogenesis of dilated cardiomyopathy associated with LMNA (Lamin A/C) mutations. Circ Res 124(6):856–873
CAS
PubMed
PubMed Central
Google Scholar
Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17(5):626–638
CAS
PubMed
Google Scholar
Cheedipudi SM, Matkovich SJ, Coarfa C, Hu X, Robertson MJ, Sweet M et al (2019) Genomic reorganization of lamin-associated domains in cardiac myocytes is associated with differential gene expression and DNA methylation in human dilated cardiomyopathy. Circ Res 124(8):1198–1213
CAS
PubMed
PubMed Central
Google Scholar
Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, Worman HJ (2007) Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Investig 117(5):1282–1293
CAS
PubMed
PubMed Central
Google Scholar
Wu W, Muchir A, Shan J, Bonne G, Worman HJ (2011) Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation 123(1):53–61
CAS
PubMed
Google Scholar
Choi JC, Wu W, Muchir A, Iwata S, Homma S, Worman HJ (2012) Dual specificity phosphatase 4 mediates cardiomyopathy caused by lamin A/C (LMNA) gene mutation. J Biol Chem 287(48):40513–40524
CAS
PubMed
PubMed Central
Google Scholar
Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH et al (2012) Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 4(144):144ra103
PubMed
PubMed Central
Google Scholar
Mertens C, Kuhn C, Franke WW (1996) Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J Cell Biol 135(4):1009–1025
CAS
PubMed
Google Scholar
Bass-Zubek AE, Hobbs RP, Amargo EV, Garcia NJ, Hsieh SN, Chen X et al (2008) Plakophilin 2: a critical scaffold for PKCα that regulates intercellular junction assembly. J Cell Biol 181(4):605–613
CAS
PubMed
PubMed Central
Google Scholar
Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA et al (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 36(11):1162–1164
CAS
PubMed
Google Scholar
Syrris P, Ward D, Asimaki A, Evans A, Sen-Chowdhry S, Hughes SE, McKenna WJ (2007) Desmoglein-2 mutations in arrhythmogenic right ventricular cardiomyopathy: a genotype-phenotype characterization of familial disease. Eur Heart J 28(5):581–588
CAS
PubMed
Google Scholar
Watkins DA, Hendricks N, Shaboodien G, Mbele M, Parker M, Vezi BZ et al (2009) Clinical features, survival experience, and profile of plakophylin-2 gene mutations in participants of the arrhythmogenic right ventricular cardiomyopathy registry of South Africa. Heart Rhythm 6(11):S10–S17
PubMed
Google Scholar
Svensson A, Åström-Aneq M, Widlund KF, Fluur C, Green A, Rehnberg M, Gunnarsson C (2016) Arrhythmogenic Right Ventricular Cardiomyopathy—4 Swedish families with an associated PKP2 c.2146–1G>C variant. Am J Cardiovasc Dis 6(2):55–65
CAS
PubMed
PubMed Central
Google Scholar
Cerrone M, Montnach J, Lin X, Zhao YT, Zhang M, Agullo-Pascual E et al (2017) Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm. Nat Commun 8(1):1–16
CAS
Google Scholar
Flemming S, Luissint AC, Kusters DH, Raya-Sandino A, Fan S, Zhou DW et al (2020) Desmocollin-2 promotes intestinal mucosal repair by controlling integrin-dependent cell adhesion and migration. Mol Biol Cell 31(6):407–418
CAS
PubMed
PubMed Central
Google Scholar
Evander M, Frazer IH, Payne E, Qi YM, Hengst K, McMillan NA (1997) Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol 71(3):2449
CAS
PubMed
PubMed Central
Google Scholar
Lorenzon A, Pilichou K, Rigato I, Vazza G, De Bortoli M, Calore M et al (2015) Homozygous desmocollin-2 mutations and arrhythmogenic cardiomyopathy. Am J Cardiol 116(8):1245–1251
CAS
PubMed
Google Scholar
Liu JS, Fan LL, Li JJ, Xiang R (2017) Whole-exome sequencing identifies a novel mutation of desmocollin 2 in a Chinese family with arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol 119(9):1485–1489
CAS
PubMed
Google Scholar
Gehmlich K, Syrris P, Peskett E, Evans A, Ehler E, Asimaki A et al (2011) Mechanistic insights into arrhythmogenic right ventricular cardiomyopathy caused by desmocollin-2 mutations. Cardiovasc Res 90(1):77–87
CAS
PubMed
Google Scholar
Heuser A, Plovie ER, Ellinor PT, Grossmann KS, Shin JT, Wichter T et al (2006) Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 79(6):1081–1088
CAS
PubMed
PubMed Central
Google Scholar
Beffagna G, De Bortoli M, Nava A, Salamon M, Lorenzon A, Zaccolo M et al (2007) Missense mutations in desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Med Genet 8(1):1–10
Google Scholar
Syrris P, Ward D, Evans A, Asimaki A, Gandjbakhch E, Sen-Chowdhry S, McKenna WJ (2006) Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet 79(5):978–984
CAS
PubMed
PubMed Central
Google Scholar
De Bortoli M, Beffagna G, Bauce B, Lorenzon A, Smaniotto G, Rigato I, Calore M, Li Mura IE, Basso C, Thiene G, Lanfranchi G, Danieli GA, Nava A, Rampazzo A (2010) The p.A897KfsX4 frameshift variation in desmocollin-2 is not a causative mutation in arrhythmogenic right ventricular cardiomyopathy. Eur J Hum Genet 18(7):776–782
PubMed
PubMed Central
Google Scholar
Hermida A, Fressart V, Hidden-Lucet F, Donal E, Probst V, Deharo JC et al (2019) High risk of heart failure associated with desmoglein-2 mutations compared to plakophilin-2 mutations in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur J Heart Fail 21(6):792–800
CAS
PubMed
Google Scholar
Zhou G, Yang L, Gray A, Srivastava AK, Li C, Zhang G, Cui T (2017) The role of desmosomes in carcinogenesis. Onco Targets Ther 10:4059
PubMed
PubMed Central
Google Scholar
Maron BJ (2008) The 2006 American Heart Association classification of cardiomyopathies is the gold standard. Circ Heart Fail 1(1):72–76
PubMed
Google Scholar
Garcia-Pavia P, Syrris P, Salas C, Evans A, Mirelis JG, Cobo-Marcos M et al (2011) Desmosomal protein gene mutations in patients with idiopathic dilated cardiomyopathy undergoing cardiac transplantation: a clinicopathological study. Heart 97(21):1744–1752
CAS
PubMed
Google Scholar
Pugh TJ, Kelly MA, Gowrisankar S, Hynes E, Seidman MA, Baxter SM et al (2014) The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med 16(8):601–608
CAS
PubMed
Google Scholar
Posch MG, Posch MJ, Geier C, Erdmann B, Mueller W, Richter A et al (2008) A missense variant in desmoglein-2 predisposes to dilated cardiomyopathy. Mol Genet Metab 95(1–2):74–80
CAS
PubMed
Google Scholar
Dieding M, Debus JD, Kerkhoff R, Gaertner-Rommel A, Walhorn V, Milting H, Anselmetti D (2017) Arrhythmogenic cardiomyopathy related DSG2 mutations affect desmosomal cadherin binding kinetics. Sci Rep 7(1):1–9
CAS
Google Scholar
Ohno S, Nagaoka I, Fukuyama M, Kimura H, Itoh H, Makiyama T et al (2013) Age-dependent clinical and genetic characteristics in Japanese patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circ J 77(6):1534–1542
PubMed
Google Scholar
Bauce B, Nava A, Beffagna G, Basso C, Lorenzon A, Smaniotto G et al (2010) Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm 7(1):22–29
PubMed
Google Scholar
Bhonsale A, Groeneweg JA, James CA, Dooijes D, Tichnell C, Jongbloed JD et al (2015) Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J 36(14):847–855
CAS
PubMed
Google Scholar
Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ (2007) Clinical perspective. Circulation 115(13):1710–1720
PubMed
Google Scholar
Green KJ, Parry DA, Steinert PM, Virata ML, Wagner RM, Angst BD, Nilles LA (1990) Structure of the human desmoplakins. Implications for function in the desmosomal plaque. J Biol Chem 265(5):2603–2612
CAS
PubMed
Google Scholar
Green KJ, Stappenbeck TS, Parry DA, Virata MLA (1992) Structure of desmoplakin and its association with intermediate filaments. J Dermatol 19(11):765–769
CAS
PubMed
Google Scholar
O’Keefe EJ, Erickson HP, Bennett V (1989) Desmoplakin I and desmoplakin II: purification and characterization. J Biol Chem 264(14):8310–8318
CAS
PubMed
Google Scholar
Keplinger JD, Landstrom AP, Salisbury BA, Callis TE, Pollevick GD, Tester DJ et al (2011) Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia—associated mutations from background genetic noise. J Am Coll Cardiol 57(23):2317–2327
Google Scholar
Alcalai R, Metzger S, Rosenheck S, Meiner V, Chajek-Shaul T (2003) A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J Am Coll Cardiol 42(2):319–327
CAS
PubMed
Google Scholar
Armstrong DKB, McKenna KE, Purkis PE, Green KJ, Eady RA, Leigh IM, Hughes AE (1999) Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum Mol Genet 8(1):143–148
CAS
PubMed
Google Scholar
Whittock NV, Ashton GH, Dopping-Hepenstal PJ, Gratian MJ, Keane FM, Eady RA, McGrath JA (1999) Striate palmoplantar keratoderma resulting from desmoplakin haploinsufficiency. J Investig Dermatol 113(6):940–946
CAS
PubMed
Google Scholar
Rampazzo A, Nava A, Malacrida S, Beffagna G, Bauce B, Rossi V et al (2002) Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 71(5):1200–1206
CAS
PubMed
PubMed Central
Google Scholar
Ng R, Manring H, Papoutsidakis N, Albertelli T, Tsai N, See CJ, Li X, Park J, Stevens TL, Bobbili PJ, Riaz M, Ren Y, Stoddard CE, Janssen PM, Bunch TJ, Hall SP, Lo YC, Jacoby DL, Qyang Y, Wright N et al (2019) Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation. JCI Insight 5(14):e128643
Google Scholar
Te Riele AS, Agullo-Pascual E, James CA, Leo-Macias A, Cerrone M, Zhang M et al (2017) Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc Res 113(1):102–111
Google Scholar
Xiong Q, Cao Q, Zhou Q, Xie J, Shen Y, Wan R et al (2015) Arrhythmogenic cardiomyopathy in a patient with a rare loss-of-function KCNQ 1 mutation. J Am Heart Assoc 4(1):e001526
PubMed
PubMed Central
Google Scholar
Asimaki A, Syrris P, Wichter T, Matthias P, Saffitz JE, McKenna WJ (2007) A novel dominant mutation in plakoglobin causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 81(5):964–973
CAS
PubMed
PubMed Central
Google Scholar
Asimaki A, Protonotarios A, James CA, Chelko SP, Tichnell C, Murray B et al (2016) Characterizing the molecular pathology of arrhythmogenic cardiomyopathy inpatient buccal mucosa cells. Circ Arrhythm Electrophysiol 9(2):e003688
CAS
PubMed
PubMed Central
Google Scholar
Cabral RM, Liu L, Hogan C, Dopping-Hepenstal PJ, Winik BC, Asia RA et al (2010) Homozygous mutations in the 5′ region of the JUP gene result in cutaneous disease but normal heart development in children. J Investig Dermatol 130(6):1543–1550
CAS
PubMed
Google Scholar
Pigors M, Kiritsi D, Krümpelmann S, Wagner N, He Y, Podda M et al (2011) Lack of plakoglobin leads to lethal congenital epidermolysis bullosa: a novel clinico-genetic entity. Hum Mol Genet 20(9):1811–1819
CAS
PubMed
Google Scholar
Christensen AH, Benn M, Bundgaard H, Tybjærg-Hansen A, Haunso S, Svendsen JH (2010) Wide spectrum of desmosomal mutations in Danish patients with arrhythmogenic right ventricular cardiomyopathy. J Med Genet 47(11):736–744
CAS
PubMed
Google Scholar
Liu L, Chen C, Li Y, Yu R (2019) Whole-exome sequencing identified a de novo mutation of junction plakoglobin (p. R577C) in a Chinese patient with arrhythmogenic right ventricular cardiomyopathy. BioMed Res Int 2019:9103860
PubMed
PubMed Central
Google Scholar
Vahidnezhad H, Youssefian L, Faghankhani M, Mozafari N, Saeidian AH, Niaziorimi F et al (2020) Arrhythmogenic right ventricular cardiomyopathy in patients with biallelic JUP-associated skin fragility. Sci Rep 10(1):1–10
Google Scholar
Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M et al (2001) The complete gene sequence of titin, expression of an unusual≈ 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89(11):1065–1072
CAS
PubMed
Google Scholar
Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P (2016) Increasing role of titin mutations in neuromuscular disorders. J Neuromuscul Dis 3(3):293–308
PubMed
PubMed Central
Google Scholar
Savarese M, Vihola A, Oates EC, Barresi R, Fiorillo C, Tasca G et al (2020) Genotype–phenotype correlations in recessive titinopathies. Genet Med 22(12):2029–2040
CAS
PubMed
Google Scholar
Akhtar MM, Lorenzini M, Cicerchia M, Ochoa JP, Hey TM, Sabater Molina M et al (2020) Clinical phenotypes and prognosis of dilated cardiomyopathy caused by truncating variants in the TTN gene. Circ Heart Fail 13(10):e006832
CAS
PubMed
Google Scholar
Vikhorev PG, Vikhoreva NN, Yeung W, Li A, Lal S, Dos Remedios CG et al (2020) Titin-truncating mutations associated with dilated cardiomyopathy alter length-dependent activation and its modulation via phosphorylation. Cardiovasc Res 118:241–253
PubMed Central
Google Scholar
Fang HJ, Liu BP (2019) Prevalence of TTN mutations in patients with dilated cardiomyopathy. Herz 45:1–8
Google Scholar
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S et al (2020) Panorama of the distal myopathies. Acta Myol 39(4):245
CAS
PubMed
PubMed Central
Google Scholar
Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC et al (2016) A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351(6273):617–621
CAS
PubMed
PubMed Central
Google Scholar
Alfares AA, Kelly MA, Mcdermott G, Funke BH, Lebo MS, Baxter SB et al (2015) Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med 17(11):880–888
PubMed
Google Scholar
GeneTests (2016) https://www.genetests.org. Accessed 17 Oct 2016
GTR: Genetic Testing Registry. National Institutes of Health. https://www.ncbi.nlm.nih.gov/gtr/. Accessed 1 Aug 2016