Horn MA, Trafford AW (2016) Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J Mol Cell Cardiol 93:175–185. https://doi.org/10.1016/j.yjmcc.2015.11.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Dominguez LJ, Barbagallo M (2016) The biology of the metabolic syndrome and aging. Curr Opin Clin Nutr Metab Care 19(1):5–11. https://doi.org/10.1097/MCO.0000000000000243
Article
CAS
PubMed
Google Scholar
Wang R, Wen X, Huang C, Liang Y, Mo Y, Xue L (2019) Association between inflammation-based prognostic scores and in-hospital outcomes in elderly patients with acute myocardial infarction. Clin Interv Aging 14:1199–1206. https://doi.org/10.2147/CIA.S214222
Article
CAS
PubMed
PubMed Central
Google Scholar
Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70(2):181–190. https://doi.org/10.1016/j.cardiores.2006.02.025
Article
CAS
PubMed
Google Scholar
Ren J, Sowers JR, Zhang Y (2018) Metabolic stress, autophagy, and cardiovascular aging: from pathophysiology to therapeutics. Trends Endocrinol Metab 29(10):699–711. https://doi.org/10.1016/j.tem.2018.08.001
Article
CAS
PubMed
PubMed Central
Google Scholar
He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481(7382):511–515. https://doi.org/10.1038/nature10758
Article
CAS
PubMed
PubMed Central
Google Scholar
Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293. https://doi.org/10.1016/j.molcel.2010.09.023
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdellatif M, Kroemer G (2021) Co-ordinated mitochondrial degradation by autophagy and heterophagy in cardiac homeostasis. Cardiovasc Res 117(1):e1–e3. https://doi.org/10.1093/cvr/cvaa345
Article
CAS
PubMed
Google Scholar
Wang L, Li Y, Ning N, Wang J, Yan Z, Zhang S, Jiao X, Wang X, Liu H (2018) Decreased autophagy induced by beta1-adrenoceptor autoantibodies contributes to cardiomyocyte apoptosis. Cell Death Dis 9(3):406. https://doi.org/10.1038/s41419-018-0445-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryter SW, Bhatia D, Choi ME (2019) Autophagy: a lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid Redox Signal 30(1):138–159. https://doi.org/10.1089/ars.2018.7518
Article
CAS
PubMed
Google Scholar
Hu F, Liu F (2014) Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations. Protein Cell 5(1):21–35. https://doi.org/10.1007/s13238-013-0002-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura S, Yoshimori T (2018) Autophagy and longevity. Mol Cells 41(1):65–72. https://doi.org/10.14348/molcells.2018.2333
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan R, Camandola S, Mattson MP (2003) Intermittent fasting and dietary supplementation with 2-deoxy-D-glucose improve functional and metabolic cardiovascular risk factors in rats. FASEB J 17(9):1133–1134. https://doi.org/10.1096/fj.02-0996fje
Article
CAS
PubMed
Google Scholar
Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Varady KA (2013) Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity 21(7):1370–1379. https://doi.org/10.1002/oby.20353
Article
CAS
PubMed
Google Scholar
Malinowski B, Zalewska K, Wesierska A, Sokolowska MM, Socha M, Liczner G, Pawlak-Osinska K, Wicinski M (2019) Intermittent fasting in cardiovascular disorders—an overview. Nutrients 11(3):673. https://doi.org/10.3390/nu11030673
Article
CAS
PubMed Central
Google Scholar
Aksungar FB, Topkaya AE, Akyildiz M (2007) Interleukin-6, C-reactive protein and biochemical parameters during prolonged intermittent fasting. Ann Nutr Metab 51(1):88–95. https://doi.org/10.1159/000100954
Article
CAS
PubMed
Google Scholar
Wan R, Camandola S, Mattson MP (2003) Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. J Nutr 133(6):1921–1929. https://doi.org/10.1093/jn/133.6.1921
Article
CAS
PubMed
Google Scholar
Mukai R, Zablocki D, Sadoshima J (2019) Intermittent fasting reverses an advanced form of cardiomyopathy. J Am Heart Assoc 8(4):e011863. https://doi.org/10.1161/JAHA.118.011863
Article
PubMed
PubMed Central
Google Scholar
Lobo Filho HG, Ferreira NL, Sousa RB, Carvalho ER, Lobo PL, Lobo Filho JG (2011) Experimental model of myocardial infarction induced by isoproterenol in rats. Rev Bras Cir Cardiovasc 26(3):469–476. https://doi.org/10.5935/1678-9741.20110024
Article
PubMed
Google Scholar
Agrawal YO, Sharma PK, Shrivastava B, Arya DS, Goyal SN (2014) Hesperidin blunts streptozotocin-isoproternol induced myocardial toxicity in rats by altering of PPAR-gamma receptor. Chem Biol Interact 219:211–220. https://doi.org/10.1016/j.cbi.2014.06.010
Article
CAS
PubMed
Google Scholar
Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22(2):158–161. https://doi.org/10.1136/jcp.22.2.158
Article
CAS
PubMed
PubMed Central
Google Scholar
Niemczyk S, Szamotulska K, Giers K, Jasik M, Bartoszewicz Z, Romejko-Ciepielewska K, Paklerska E, Gomolka M, Matuszkiewicz-Rowinska J (2013) Homeostatic model assessment indices in evaluation of insulin resistance and secretion in hemodialysis patients. Med Sci Monit 19:592–598. https://doi.org/10.12659/MSM.883978
Article
PubMed
PubMed Central
Google Scholar
Wu AH, Bowers GN Jr (1982) Evaluation and comparison of immunoinhibition and immunoprecipitation methods for differentiating MB and BB from macro forms of creatine kinase isoenzymes in patients and healthy individuals. Clin Chem 28(10):2017–2021
Article
CAS
PubMed
Google Scholar
Lapenna D, Ciofani G, Lelli Chiesa P, Porreca E (2020) Evidence for oxidative and not reductive stress in the aged rabbit heart. Exp Gerontol 134:110871. https://doi.org/10.1016/j.exger.2020.110871
Article
PubMed
Google Scholar
Mohajeri M, Sahebkar A (2018) Protective effects of curcumin against doxorubicin-induced toxicity and resistance: a review. Crit Rev Oncol Hematol 122:30–51. https://doi.org/10.1016/j.critrevonc.2017.12.005
Article
PubMed
Google Scholar
Linton PJ, Gurney M, Sengstock D, Mentzer RM Jr, Gottlieb RA (2015) This old heart: cardiac aging and autophagy. J Mol Cell Cardiol 83:44–54. https://doi.org/10.1016/j.yjmcc.2014.12.017
Article
CAS
PubMed
Google Scholar
Godar RJ, Ma X, Liu H, Murphy JT, Weinheimer CJ, Kovacs A, Crosby SD, Saftig P, Diwan A (2015) Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury. Autophagy 11(9):1537–1560. https://doi.org/10.1080/15548627.2015.1063768
Article
CAS
PubMed
PubMed Central
Google Scholar
Buja LM (2005) Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 14(4):170–175. https://doi.org/10.1016/j.carpath.2005.03.006
Article
CAS
PubMed
Google Scholar
Burke AP, Virmani R (2007) Pathophysiology of acute myocardial infarction. Med Clin North Am 91(4):553–572. https://doi.org/10.1016/j.mcna.2007.03.005
Article
PubMed
Google Scholar
Kurian G, Rajagopal R, Vedantham S, Mohanraj R (2016) The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxid Med Cell Longev 2016:1–14. https://doi.org/10.1155/2016/1656450
Article
CAS
Google Scholar
Peoples J, Saraf A, Ghazal N, Pham T, Kwong J (2019) Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 51:162. https://doi.org/10.1038/s12276-019-0355-7
Article
CAS
PubMed Central
Google Scholar
Peng Y, Chen B, Zhao J, Peng Z, Xu W, Yu G (2019) Effect of intravenous transplantation of hUCB-MSCs on M1/M2 subtype conversion in monocyte/macrophages of AMI mice. Biomed Pharmacother 111:624–630. https://doi.org/10.1016/j.biopha.2018.12.095
Article
CAS
PubMed
Google Scholar
Zhang L, Liu P, Wen W, Bai X, Zhang Y, Liu M, Wang L, Wu Y, Yuan Z, Zhou J (2019) IL-17A contributes to myocardial ischemic injury by activating NLRP3 inflammasome in macrophages through AMPKα/p38MAPK/ERK1/2 signal pathway in mice. Mol Immunol 105:240–250. https://doi.org/10.1016/j.molimm.2018.12.014
Article
CAS
PubMed
Google Scholar
Badadani M (2012) Autophagy mechanism, regulation, functions, and disorders. ISRN Cell Biol. https://doi.org/10.5402/2012/927064
Article
Google Scholar
Wang M, Zhang WB, Zhu JH, Fu GS, Zhou BQ (2009) Breviscapine ameliorates hypertrophy of cardiomyocytes induced by high glucose in diabetic rats via the PKC signaling pathway. Acta Pharmacol Sin 30(8):1081–1091. https://doi.org/10.1038/aps.2009.95
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330(6009):1344. https://doi.org/10.1126/science.1193497
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong Z, Chu G, Sima Y, Chen G (2018) Djhsp90s are crucial regulators during planarian regeneration and tissue homeostasis. Biochem Biophys Res Commun 498(4):723–728. https://doi.org/10.1016/j.bbrc.2018.03.047
Article
CAS
PubMed
Google Scholar
Wang X, Guo Z, Ding Z, Mehta JL (2018) Inflammation, autophagy, and apoptosis after myocardial infarction. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.008024
Article
PubMed
PubMed Central
Google Scholar
Shefa U, Jeong NY, Song IO, Chung HJ, Kim D, Jung J, Huh Y (2019) Mitophagy links oxidative stress conditions and neurodegenerative diseases. Neural Regen Res 14(5):749–756. https://doi.org/10.4103/1673-5374.249218
Article
PubMed
PubMed Central
Google Scholar
Jung HS, Lee MS (2010) Role of autophagy in diabetes and mitochondria. Ann N Y Acad Sci 1201:79–83. https://doi.org/10.1111/j.1749-6632.2010.05614.x
Article
CAS
PubMed
Google Scholar
Wang S, Sun QQ, Xiang B, Li XJ (2013) Pancreatic islet cell autophagy during aging in rats. Clin Invest Med 36(2):E72-80. https://doi.org/10.25011/cim.v36i2.19569
Article
CAS
PubMed
Google Scholar
Worthley M, Clement F, Anderson T, Traboulsi M (2007) Prognostic implication of hyperglycemia in myocardial infarction and primary angioplasty. Am J Med 120:643.e641-647. https://doi.org/10.1016/j.amjmed.2006.06.043
Article
Google Scholar
Weir GC, Bonner-Weir S (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53(Suppl 3):S16-21. https://doi.org/10.2337/diabetes.53.suppl_3.s16
Article
CAS
PubMed
Google Scholar
Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976. https://doi.org/10.1016/j.cell.2017.02.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Kouri G, Wollheim CB (2005) ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 118(Pt 17):3905–3915. https://doi.org/10.1242/jcs.02513
Article
CAS
PubMed
Google Scholar
Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451. https://doi.org/10.1016/j.cell.2006.04.014
Article
CAS
PubMed
Google Scholar
Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477. https://doi.org/10.1016/s1534-5807(04)00099-1
Article
CAS
PubMed
Google Scholar
Deedwania P, Kosiborod M, Barrett E, Ceriello A, Isley W, Mazzone T, Raskin P, American Heart Association Diabetes Committee of the Council on Nutrition PA, Metabolism (2008) Hyperglycemia and acute coronary syndrome: a scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 117(12):1610–1619. https://doi.org/10.1161/CIRCULATIONAHA.107.188629
Article
PubMed
Google Scholar
Kersten JR, Toller WG, Tessmer JP, Pagel PS, Warltier DC (2001) Hyperglycemia reduces coronary collateral blood flow through a nitric oxide-mediated mechanism. Am J Physiol Heart Circ Physiol 281(5):H2097-2104. https://doi.org/10.1152/ajpheart.2001.281.5.H2097
Article
CAS
PubMed
Google Scholar
Ceriello A, Quagliaro L, D’Amico M, Di Filippo C, Marfella R, Nappo F, Berrino L, Rossi F, Giugliano D (2002) Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes 51(4):1076–1082. https://doi.org/10.2337/diabetes.51.4.1076
Article
CAS
PubMed
Google Scholar
Finfer S, Chittock D, Su S, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson W, Hébert P, Heritier S, Heyland D, McArthur C, McDonald E, Mitchell I, Myburgh J, Norton R, Potter J, Ronco J (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297. https://doi.org/10.1056/NEJMoa0810625
Article
PubMed
Google Scholar
St-Onge M-P, Gallagher D (2010) Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation? Nutrition 26(2):152–155. https://doi.org/10.1016/j.nut.2009.07.004
Article
CAS
PubMed
Google Scholar
Nistiar F, Racz O, Lukacinova A, Hubkova B, Novakova J, Lovasova E, Sedlakova E (2012) Age dependency on some physiological and biochemical parameters of male Wistar rats in controlled environment. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(9):1224–1233. https://doi.org/10.1080/10934529.2012.672071
Article
CAS
PubMed
Google Scholar
Sawaki D, Czibik G, Pini M, Ternacle J, Suffee N, Mercedes R, Marcelin G, Surenaud M, Marcos E, Gual P, Clément K, Hue S, Adnot S, Hatem SN, Tsuchimochi I, Yoshimitsu T, Hénégar C, Derumeaux G (2018) Visceral adipose tissue drives cardiac aging through modulation of fibroblast senescence by osteopontin production. Circulation 138(8):809–822. https://doi.org/10.1161/circulationaha.117.031358
Article
CAS
PubMed
Google Scholar
Zhang Y, Sowers JR, Ren J (2018) Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 14(6):356–376. https://doi.org/10.1038/s41574-018-0009-1
Article
CAS
PubMed
Google Scholar
Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, O’Donnell CJ, Fox CS (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117(5):605–613. https://doi.org/10.1161/CIRCULATIONAHA.107.743062
Article
PubMed
Google Scholar
Wan R, Ahmet I, Brown M, Cheng A, Kamimura N, Talan M, Mattson MP (2010) Cardioprotective effect of intermittent fasting is associated with an elevation of adiponectin levels in rats. J Nutr Biochem 21(5):413–417. https://doi.org/10.1016/j.jnutbio.2009.01.020
Article
CAS
PubMed
Google Scholar
Schubel R, Nattenmuller J, Sookthai D, Nonnenmacher T, Graf ME, Riedl L, Schlett CL, von Stackelberg O, Johnson T, Nabers D, Kirsten R, Kratz M, Kauczor HU, Ulrich CM, Kaaks R, Kuhn T (2018) Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: a randomized controlled trial. Am J Clin Nutr 108(5):933–945. https://doi.org/10.1093/ajcn/nqy196
Article
PubMed
PubMed Central
Google Scholar
Bhutani S, Klempel MC, Berger RA, Varady KA (2010) Improvements in coronary heart disease risk indicators by alternate-day fasting involve adipose tissue modulations. Obesity 18(11):2152–2159. https://doi.org/10.1038/oby.2010.54
Article
PubMed
Google Scholar
Barnosky AR, Hoddy KK, Unterman TG, Varady KA (2014) Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review of human findings. Transl Res 164(4):302–311. https://doi.org/10.1016/j.trsl.2014.05.013
Article
PubMed
Google Scholar
Patterson RE, Sears DD (2017) Metabolic effects of intermittent fasting. Annu Rev Nutr 37:371–393. https://doi.org/10.1146/annurev-nutr-071816-064634
Article
CAS
PubMed
Google Scholar
Jornayvaz FR, Jurczak MJ, Lee HY, Birkenfeld AL, Frederick DW, Zhang D, Zhang XM, Samuel VT, Shulman GI (2010) A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain. Am J Physiol Endocrinol Metab 299(5):E808-815. https://doi.org/10.1152/ajpendo.00361.2010
Article
CAS
PubMed
PubMed Central
Google Scholar
Turer AT, Hill JA (2010) Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol 106(3):360–368. https://doi.org/10.1016/j.amjcard.2010.03.032
Article
PubMed
PubMed Central
Google Scholar
Wang L, Li Y, Ning N, Wang J, Yan Z, Zhang S, Jiao X, Wang X, Liu H (2018) Decreased autophagy induced by β(1)-adrenoceptor autoantibodies contributes to cardiomyocyte apoptosis. Cell Death Dis 9(3):406. https://doi.org/10.1038/s41419-018-0445-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai YD, Yang YR, Mu XP, Lin G, Wang YP, Jin S, Chen Y, Wang MJ, Zhu YC (2018) Hydrogen sulfide alleviates acute myocardial ischemia injury by modulating autophagy and inflammation response under oxidative stress. Oxid Med Cell Longev 2018:3402809. https://doi.org/10.1155/2018/3402809
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanemura M, Ohmura Y, Deguchi T, Machida T, Tsukamoto R, Wada H, Kobayashi S, Marubashi S, Eguchi H, Ito T, Nagano H, Mori M, Doki Y (2012) Rapamycin causes upregulation of autophagy and impairs islets function both in vitro and in vivo. Am J Transplant 12(1):102–114. https://doi.org/10.1111/j.1600-6143.2011.03771.x
Article
CAS
PubMed
Google Scholar
Tommasino C, Marconi M, Ciarlo L, Matarrese P, Malorni W (2015) Autophagic flux and autophagosome morphogenesis require the participation of sphingolipids. Apoptosis 20(5):645–657. https://doi.org/10.1007/s10495-015-1102-8
Article
PubMed
Google Scholar